Loading…

Metal-printing polymer waveguide thermo-optic switches compatible with 650 and 532  nm visible signal wavelengths for plastic optical fiber systems

In this work, thermo-optic (TO) waveguide switches for 650 and 532 nm visible wavelengths are designed and fabricated by the metal-printing technique based on poly (methyl methacrylate-glycidyl methacrylate) [P(MMA-GMA)] material. The optical characteristics and thermal stability of the P(MMA-GMA) m...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2019-09, Vol.58 (25), p.6820
Main Authors: Wang, Chunxue, Zhang, Daming, Zhang, Xucheng, Wang, Jihou, Cheng, Ru, Wang, Xibin, Yi, Yunji, Sun, Xiaoqiang, Wang, Fei, Chen, Changming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, thermo-optic (TO) waveguide switches for 650 and 532 nm visible wavelengths are designed and fabricated by the metal-printing technique based on poly (methyl methacrylate-glycidyl methacrylate) [P(MMA-GMA)] material. The optical characteristics and thermal stability of the P(MMA-GMA) material are analyzed. Optical transmission modes in the core waveguide for different visible wavelengths are simulated, and the thermal field distribution from the self-heating electrode structure is calculated, respectively. The structural parameters of the devices compatible with 650 and 532 nm visible wavelengths are designed optimally. For 650 and 532 nm signal wavelengths, the insertion loss of the actual TO switch fabricated is less than 3.2 dB, and the response time of the device is about 367.4 μs at 100 Hz square wave electrical signals. The driving electrical power of the device for the 650 nm signal wavelength is 15.2 mW and 14.0 mW for the 532 nm signal wavelength, respectively. The extinction ratio of the visible TO switch for 650 nm is 15.1 dB and 18.5 dB for 532 nm, respectively. The technique is suitable for realizing plastic optical fiber system applications.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.58.006820