Loading…

Extracting physical power plant parameters from historical behaviour

The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We prese...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-09
Main Authors: Kraljic, David, Troha, Miha, Blaz Sobocan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kraljic, David
Troha, Miha
Blaz Sobocan
description The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We present a method to extract these parameters for thermal power plants on the British electricity market using only the publicly available data. For each power plant, we solve a bilevel optimisation problem, where the inner level solves the Unit Commitment (UC) problem and outputs the optimal schedule given the prices of fuel, emissions, electricity, and the unknown plant parameters. The outer level then optimises over the plant parameters matching the historical production of each plant as closely as possible.
doi_str_mv 10.48550/arxiv.1909.03661
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2287845900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287845900</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-e94fe279c836ec47bb7539f007f7eaaa177b50e7810599fc2ef7a5b6dd0cf5283</originalsourceid><addsrcrecordid>eNotjT1PwzAUAC0kJKrSH8BmiTnh2Y5je0SlfEiVWLpXL-4zSZUmwXZL-fdUwHTL6Y6xOwFlZbWGB4zn7lQKB64EVdfiis2kUqKwlZQ3bJHSHgBkbaTWasaeVucc0edu-OBT-506jz2fxi-KfOpxyHzCiAfKFBMPcTzwtkt5jL9aQy2euvEYb9l1wD7R4p9ztnlebZavxfr95W35uC5QSyjIVYGkcd6qmnxlmsZo5QKACYYQURjTaCBjBWjngpcUDOqm3u3ABy2tmrP7v-wUx88jpbzdX-bD5biV0hpbaQegfgCaxE2d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287845900</pqid></control><display><type>article</type><title>Extracting physical power plant parameters from historical behaviour</title><source>Publicly Available Content Database</source><creator>Kraljic, David ; Troha, Miha ; Blaz Sobocan</creator><creatorcontrib>Kraljic, David ; Troha, Miha ; Blaz Sobocan</creatorcontrib><description>The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We present a method to extract these parameters for thermal power plants on the British electricity market using only the publicly available data. For each power plant, we solve a bilevel optimisation problem, where the inner level solves the Unit Commitment (UC) problem and outputs the optimal schedule given the prices of fuel, emissions, electricity, and the unknown plant parameters. The outer level then optimises over the plant parameters matching the historical production of each plant as closely as possible.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1909.03661</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electricity pricing ; Operating costs ; Optimization ; Parameter estimation ; Power efficiency ; Power plants ; Schedules ; Thermal power plants ; Unit commitment</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2287845900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kraljic, David</creatorcontrib><creatorcontrib>Troha, Miha</creatorcontrib><creatorcontrib>Blaz Sobocan</creatorcontrib><title>Extracting physical power plant parameters from historical behaviour</title><title>arXiv.org</title><description>The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We present a method to extract these parameters for thermal power plants on the British electricity market using only the publicly available data. For each power plant, we solve a bilevel optimisation problem, where the inner level solves the Unit Commitment (UC) problem and outputs the optimal schedule given the prices of fuel, emissions, electricity, and the unknown plant parameters. The outer level then optimises over the plant parameters matching the historical production of each plant as closely as possible.</description><subject>Electricity pricing</subject><subject>Operating costs</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Power efficiency</subject><subject>Power plants</subject><subject>Schedules</subject><subject>Thermal power plants</subject><subject>Unit commitment</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjT1PwzAUAC0kJKrSH8BmiTnh2Y5je0SlfEiVWLpXL-4zSZUmwXZL-fdUwHTL6Y6xOwFlZbWGB4zn7lQKB64EVdfiis2kUqKwlZQ3bJHSHgBkbaTWasaeVucc0edu-OBT-506jz2fxi-KfOpxyHzCiAfKFBMPcTzwtkt5jL9aQy2euvEYb9l1wD7R4p9ztnlebZavxfr95W35uC5QSyjIVYGkcd6qmnxlmsZo5QKACYYQURjTaCBjBWjngpcUDOqm3u3ABy2tmrP7v-wUx88jpbzdX-bD5biV0hpbaQegfgCaxE2d</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Kraljic, David</creator><creator>Troha, Miha</creator><creator>Blaz Sobocan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190909</creationdate><title>Extracting physical power plant parameters from historical behaviour</title><author>Kraljic, David ; Troha, Miha ; Blaz Sobocan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-e94fe279c836ec47bb7539f007f7eaaa177b50e7810599fc2ef7a5b6dd0cf5283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electricity pricing</topic><topic>Operating costs</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Power efficiency</topic><topic>Power plants</topic><topic>Schedules</topic><topic>Thermal power plants</topic><topic>Unit commitment</topic><toplevel>online_resources</toplevel><creatorcontrib>Kraljic, David</creatorcontrib><creatorcontrib>Troha, Miha</creatorcontrib><creatorcontrib>Blaz Sobocan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraljic, David</au><au>Troha, Miha</au><au>Blaz Sobocan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting physical power plant parameters from historical behaviour</atitle><jtitle>arXiv.org</jtitle><date>2019-09-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We present a method to extract these parameters for thermal power plants on the British electricity market using only the publicly available data. For each power plant, we solve a bilevel optimisation problem, where the inner level solves the Unit Commitment (UC) problem and outputs the optimal schedule given the prices of fuel, emissions, electricity, and the unknown plant parameters. The outer level then optimises over the plant parameters matching the historical production of each plant as closely as possible.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1909.03661</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2287845900
source Publicly Available Content Database
subjects Electricity pricing
Operating costs
Optimization
Parameter estimation
Power efficiency
Power plants
Schedules
Thermal power plants
Unit commitment
title Extracting physical power plant parameters from historical behaviour
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20physical%20power%20plant%20parameters%20from%20historical%20behaviour&rft.jtitle=arXiv.org&rft.au=Kraljic,%20David&rft.date=2019-09-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1909.03661&rft_dat=%3Cproquest%3E2287845900%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-e94fe279c836ec47bb7539f007f7eaaa177b50e7810599fc2ef7a5b6dd0cf5283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287845900&rft_id=info:pmid/&rfr_iscdi=true