Loading…
Extracting physical power plant parameters from historical behaviour
The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We prese...
Saved in:
Published in: | arXiv.org 2019-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kraljic, David Troha, Miha Blaz Sobocan |
description | The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We present a method to extract these parameters for thermal power plants on the British electricity market using only the publicly available data. For each power plant, we solve a bilevel optimisation problem, where the inner level solves the Unit Commitment (UC) problem and outputs the optimal schedule given the prices of fuel, emissions, electricity, and the unknown plant parameters. The outer level then optimises over the plant parameters matching the historical production of each plant as closely as possible. |
doi_str_mv | 10.48550/arxiv.1909.03661 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2287845900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287845900</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-e94fe279c836ec47bb7539f007f7eaaa177b50e7810599fc2ef7a5b6dd0cf5283</originalsourceid><addsrcrecordid>eNotjT1PwzAUAC0kJKrSH8BmiTnh2Y5je0SlfEiVWLpXL-4zSZUmwXZL-fdUwHTL6Y6xOwFlZbWGB4zn7lQKB64EVdfiis2kUqKwlZQ3bJHSHgBkbaTWasaeVucc0edu-OBT-506jz2fxi-KfOpxyHzCiAfKFBMPcTzwtkt5jL9aQy2euvEYb9l1wD7R4p9ztnlebZavxfr95W35uC5QSyjIVYGkcd6qmnxlmsZo5QKACYYQURjTaCBjBWjngpcUDOqm3u3ABy2tmrP7v-wUx88jpbzdX-bD5biV0hpbaQegfgCaxE2d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287845900</pqid></control><display><type>article</type><title>Extracting physical power plant parameters from historical behaviour</title><source>Publicly Available Content Database</source><creator>Kraljic, David ; Troha, Miha ; Blaz Sobocan</creator><creatorcontrib>Kraljic, David ; Troha, Miha ; Blaz Sobocan</creatorcontrib><description>The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We present a method to extract these parameters for thermal power plants on the British electricity market using only the publicly available data. For each power plant, we solve a bilevel optimisation problem, where the inner level solves the Unit Commitment (UC) problem and outputs the optimal schedule given the prices of fuel, emissions, electricity, and the unknown plant parameters. The outer level then optimises over the plant parameters matching the historical production of each plant as closely as possible.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1909.03661</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electricity pricing ; Operating costs ; Optimization ; Parameter estimation ; Power efficiency ; Power plants ; Schedules ; Thermal power plants ; Unit commitment</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2287845900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kraljic, David</creatorcontrib><creatorcontrib>Troha, Miha</creatorcontrib><creatorcontrib>Blaz Sobocan</creatorcontrib><title>Extracting physical power plant parameters from historical behaviour</title><title>arXiv.org</title><description>The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We present a method to extract these parameters for thermal power plants on the British electricity market using only the publicly available data. For each power plant, we solve a bilevel optimisation problem, where the inner level solves the Unit Commitment (UC) problem and outputs the optimal schedule given the prices of fuel, emissions, electricity, and the unknown plant parameters. The outer level then optimises over the plant parameters matching the historical production of each plant as closely as possible.</description><subject>Electricity pricing</subject><subject>Operating costs</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Power efficiency</subject><subject>Power plants</subject><subject>Schedules</subject><subject>Thermal power plants</subject><subject>Unit commitment</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjT1PwzAUAC0kJKrSH8BmiTnh2Y5je0SlfEiVWLpXL-4zSZUmwXZL-fdUwHTL6Y6xOwFlZbWGB4zn7lQKB64EVdfiis2kUqKwlZQ3bJHSHgBkbaTWasaeVucc0edu-OBT-506jz2fxi-KfOpxyHzCiAfKFBMPcTzwtkt5jL9aQy2euvEYb9l1wD7R4p9ztnlebZavxfr95W35uC5QSyjIVYGkcd6qmnxlmsZo5QKACYYQURjTaCBjBWjngpcUDOqm3u3ABy2tmrP7v-wUx88jpbzdX-bD5biV0hpbaQegfgCaxE2d</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Kraljic, David</creator><creator>Troha, Miha</creator><creator>Blaz Sobocan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190909</creationdate><title>Extracting physical power plant parameters from historical behaviour</title><author>Kraljic, David ; Troha, Miha ; Blaz Sobocan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-e94fe279c836ec47bb7539f007f7eaaa177b50e7810599fc2ef7a5b6dd0cf5283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electricity pricing</topic><topic>Operating costs</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Power efficiency</topic><topic>Power plants</topic><topic>Schedules</topic><topic>Thermal power plants</topic><topic>Unit commitment</topic><toplevel>online_resources</toplevel><creatorcontrib>Kraljic, David</creatorcontrib><creatorcontrib>Troha, Miha</creatorcontrib><creatorcontrib>Blaz Sobocan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraljic, David</au><au>Troha, Miha</au><au>Blaz Sobocan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting physical power plant parameters from historical behaviour</atitle><jtitle>arXiv.org</jtitle><date>2019-09-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The information needed for fundamental modelling of the power markets -- the efficiency, start-up, fixed, and variable operating costs of each power plant -- is not publicly available. These parameters are usually estimated by considering the type of technology and the age of a power plant. We present a method to extract these parameters for thermal power plants on the British electricity market using only the publicly available data. For each power plant, we solve a bilevel optimisation problem, where the inner level solves the Unit Commitment (UC) problem and outputs the optimal schedule given the prices of fuel, emissions, electricity, and the unknown plant parameters. The outer level then optimises over the plant parameters matching the historical production of each plant as closely as possible.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1909.03661</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2287845900 |
source | Publicly Available Content Database |
subjects | Electricity pricing Operating costs Optimization Parameter estimation Power efficiency Power plants Schedules Thermal power plants Unit commitment |
title | Extracting physical power plant parameters from historical behaviour |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20physical%20power%20plant%20parameters%20from%20historical%20behaviour&rft.jtitle=arXiv.org&rft.au=Kraljic,%20David&rft.date=2019-09-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1909.03661&rft_dat=%3Cproquest%3E2287845900%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-e94fe279c836ec47bb7539f007f7eaaa177b50e7810599fc2ef7a5b6dd0cf5283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287845900&rft_id=info:pmid/&rfr_iscdi=true |