Loading…

Constraints on axions from neutron star in HESS J1731-347

To constrain the allowed range for the axion decay constant \(f_{a}\) or, equivalently, for the axion mass \(m_{a}\), we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Author: Leinson, Lev B
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Leinson, Lev B
description To constrain the allowed range for the axion decay constant \(f_{a}\) or, equivalently, for the axion mass \(m_{a}\), we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that \(f_{a}>1.9\times 10^{8}\) GeV, while for the DFSZ-axion model we obtain \(f_{a}>4.7\times 10^{9}\) GeV.
doi_str_mv 10.48550/arxiv.1909.03941
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2287847984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287847984</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-43df175d1d085e16f5fd24cbae8aac632e90da208f67a2dc90f5a1718974bee3</originalsourceid><addsrcrecordid>eNotjUFLwzAYQIMgbMz9AG8Bz61fviRNcpQynTLwUO_jW5NAx0w1aWU_34KeHrzDe4zdC6iV1RoeKV-Hn1o4cDVIp8QNW6OUorIKccW2pZwBABuDWss1c-2YypRpSFPhY-J0HRbBYx4_eQrzlBdXJsp8SHy_6zr-JswSk8rcsdtIlxK2_9yw7nn30e6rw_vLa_t0qEijqpT0URjthQerg2iijh5Vf6JgifpGYnDgCcHGxhD63kHUJIywzqhTCHLDHv6qX3n8nkOZjudxzmkZHhGtsco4q-QvzrRGaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287847984</pqid></control><display><type>article</type><title>Constraints on axions from neutron star in HESS J1731-347</title><source>Publicly Available Content (ProQuest)</source><creator>Leinson, Lev B</creator><creatorcontrib>Leinson, Lev B</creatorcontrib><description>To constrain the allowed range for the axion decay constant \(f_{a}\) or, equivalently, for the axion mass \(m_{a}\), we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that \(f_{a}&gt;1.9\times 10^{8}\) GeV, while for the DFSZ-axion model we obtain \(f_{a}&gt;4.7\times 10^{9}\) GeV.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1909.03941</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bremsstrahlung ; Cooling ; Decay rate ; Einstein equations ; Exact solutions ; Fluids ; Neutrinos ; Neutron stars ; Neutrons ; Superfluidity ; Supernova remnants ; Thermal relaxation</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2287847984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Leinson, Lev B</creatorcontrib><title>Constraints on axions from neutron star in HESS J1731-347</title><title>arXiv.org</title><description>To constrain the allowed range for the axion decay constant \(f_{a}\) or, equivalently, for the axion mass \(m_{a}\), we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that \(f_{a}&gt;1.9\times 10^{8}\) GeV, while for the DFSZ-axion model we obtain \(f_{a}&gt;4.7\times 10^{9}\) GeV.</description><subject>Bremsstrahlung</subject><subject>Cooling</subject><subject>Decay rate</subject><subject>Einstein equations</subject><subject>Exact solutions</subject><subject>Fluids</subject><subject>Neutrinos</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Superfluidity</subject><subject>Supernova remnants</subject><subject>Thermal relaxation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUFLwzAYQIMgbMz9AG8Bz61fviRNcpQynTLwUO_jW5NAx0w1aWU_34KeHrzDe4zdC6iV1RoeKV-Hn1o4cDVIp8QNW6OUorIKccW2pZwBABuDWss1c-2YypRpSFPhY-J0HRbBYx4_eQrzlBdXJsp8SHy_6zr-JswSk8rcsdtIlxK2_9yw7nn30e6rw_vLa_t0qEijqpT0URjthQerg2iijh5Vf6JgifpGYnDgCcHGxhD63kHUJIywzqhTCHLDHv6qX3n8nkOZjudxzmkZHhGtsco4q-QvzrRGaw</recordid><startdate>20191031</startdate><enddate>20191031</enddate><creator>Leinson, Lev B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191031</creationdate><title>Constraints on axions from neutron star in HESS J1731-347</title><author>Leinson, Lev B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-43df175d1d085e16f5fd24cbae8aac632e90da208f67a2dc90f5a1718974bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bremsstrahlung</topic><topic>Cooling</topic><topic>Decay rate</topic><topic>Einstein equations</topic><topic>Exact solutions</topic><topic>Fluids</topic><topic>Neutrinos</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Superfluidity</topic><topic>Supernova remnants</topic><topic>Thermal relaxation</topic><toplevel>online_resources</toplevel><creatorcontrib>Leinson, Lev B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leinson, Lev B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on axions from neutron star in HESS J1731-347</atitle><jtitle>arXiv.org</jtitle><date>2019-10-31</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>To constrain the allowed range for the axion decay constant \(f_{a}\) or, equivalently, for the axion mass \(m_{a}\), we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that \(f_{a}&gt;1.9\times 10^{8}\) GeV, while for the DFSZ-axion model we obtain \(f_{a}&gt;4.7\times 10^{9}\) GeV.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1909.03941</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2287847984
source Publicly Available Content (ProQuest)
subjects Bremsstrahlung
Cooling
Decay rate
Einstein equations
Exact solutions
Fluids
Neutrinos
Neutron stars
Neutrons
Superfluidity
Supernova remnants
Thermal relaxation
title Constraints on axions from neutron star in HESS J1731-347
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20axions%20from%20neutron%20star%20in%20HESS%20J1731-347&rft.jtitle=arXiv.org&rft.au=Leinson,%20Lev%20B&rft.date=2019-10-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1909.03941&rft_dat=%3Cproquest%3E2287847984%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-43df175d1d085e16f5fd24cbae8aac632e90da208f67a2dc90f5a1718974bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287847984&rft_id=info:pmid/&rfr_iscdi=true