Loading…
A Comparative Study on Vertical Dynamic Responses of Three Types of Elevated Railway Tracks Subjected to a Moving Train
A theoretical model incorporating the moving train, the railway track, and the elevated viaduct is established and then solved using periodic theory in this paper. The vertical wheel/rail forces and the dynamic responses of track and viaduct girder are obtained and compared for three different types...
Saved in:
Published in: | Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A theoretical model incorporating the moving train, the railway track, and the elevated viaduct is established and then solved using periodic theory in this paper. The vertical wheel/rail forces and the dynamic responses of track and viaduct girder are obtained and compared for three different types of tracks, i.e., the double-block ballastless track, the rubber-pad floating slab track, and the steel-spring floating slab track. It is observed that the rubber-pad and steel-spring floating slab tracks can reduce more than 10% of the wheel/rail force and the reaction force at girder supports, when compared to those of the double-block ballastless track. Especially, the steel-spring floating slab track develops an uplifting force larger than the installation force of the fastening clip, which may cause failure of the rail fastening system. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2019/3290958 |