Loading…

A Comparative Study on Vertical Dynamic Responses of Three Types of Elevated Railway Tracks Subjected to a Moving Train

A theoretical model incorporating the moving train, the railway track, and the elevated viaduct is established and then solved using periodic theory in this paper. The vertical wheel/rail forces and the dynamic responses of track and viaduct girder are obtained and compared for three different types...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-11
Main Authors: Guo, Lin, Zhang, Pengfei, Ye, Xiaoqiang, Shi, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A theoretical model incorporating the moving train, the railway track, and the elevated viaduct is established and then solved using periodic theory in this paper. The vertical wheel/rail forces and the dynamic responses of track and viaduct girder are obtained and compared for three different types of tracks, i.e., the double-block ballastless track, the rubber-pad floating slab track, and the steel-spring floating slab track. It is observed that the rubber-pad and steel-spring floating slab tracks can reduce more than 10% of the wheel/rail force and the reaction force at girder supports, when compared to those of the double-block ballastless track. Especially, the steel-spring floating slab track develops an uplifting force larger than the installation force of the fastening clip, which may cause failure of the rail fastening system.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/3290958