Loading…

High‐Density Sb2Te3 Nanopillars Arrays by Templated, Bottom‐Up MOCVD Growth

Sb2Te3 exhibits several technologically relevant properties, such as high thermoelectric efficiency, topological insulator character, and phase change memory behavior. Improved performances are observed and novel effects are predicted for this and other chalcogenide alloys when synthetized in the fo...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-09, Vol.15 (37), p.n/a
Main Authors: Cecchini, Raimondo, Gajjela, Raja S. R., Martella, Christian, Wiemer, Claudia, Lamperti, Alessio, Nasi, Lucia, Lazzarini, Laura, Nobili, Luca G., Longo, Massimo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 37
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Cecchini, Raimondo
Gajjela, Raja S. R.
Martella, Christian
Wiemer, Claudia
Lamperti, Alessio
Nasi, Lucia
Lazzarini, Laura
Nobili, Luca G.
Longo, Massimo
description Sb2Te3 exhibits several technologically relevant properties, such as high thermoelectric efficiency, topological insulator character, and phase change memory behavior. Improved performances are observed and novel effects are predicted for this and other chalcogenide alloys when synthetized in the form of high‐aspect‐ratio nanostructures. The ability to grow chalcogenide nanowires and nanopillars (NPs) with high crystal quality in a controlled fashion, in terms of their size and position, can boost the realization of novel thermoelectric, spintronic, and memory devices. Here, it is shown that highly dense arrays of ultrascaled Sb2Te3 NPs can be grown by metal organic chemical vapor deposition (MOCVD) on patterned substrates. In particular, crystalline Sb2Te3 NPs with a diameter of 20 nm and a height of 200 nm are obtained in Au‐functionalized, anodized aluminum oxide (AAO) templates with a pore density of ≈5 × 1010 cm−2. Also, MOCVD growth of Sb2Te3 can be followed either by mechanical polishing and chemical etching to produce Sb2Te3 NPs arrays with planar surfaces or by chemical dissolution of the AAO templates to obtain freestanding Sb2Te3 NPs forests. The illustrated growth method can be further scaled to smaller pore sizes and employed for other MOCVD‐grown chalcogenide alloys and patterned substrates. Sb2Te3 nanostructures are grown by metal organic chemical vapor deposition (MOCVD) to form dense arrays: 20 nm single‐crystal Sb2Te3 nanopillars are grown by MOCVD inside high density (5 × 1010 cm−2) pores of aluminum oxide membranes. High‐density forests of freestanding Sb2Te3 nanopillars are also obtained. These methods can be used for different chalcogenide alloys and substrates.
doi_str_mv 10.1002/smll.201901743
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2287890031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287890031</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2733-573dff5a845f1bb5fef4be0e167fb5a47e1a85491d71b708be2517d3fcbd959a3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYhePTfx6mKn3dLtEQHBZJED4LVp3VaW7LJru4TszZ_gb_SXCMFwmjfJezN5H0L3QHpACH0KZVH0KAFJQMTsAnWgDyzqJ1RenjWQa3QTwoYQBjQWHTSf5p_r3--fkd2GvGnxwtClZfhNb6s6LwrtAx54r9uATYuXtqwL3djsET9XTVOVh-CqxrP58H2EJ77aN-tbdOV0Eezd_-yi1ct4OZxG6XzyOhykUU0FYxEXLHOO6yTmDozhzrrYWGKhL5zhOhYWdMJjCZkAI0hiLOUgMuY-TCa51KyLHk53a1997Wxo1Kba-e3hpaI0EYk8Njy45Mm1zwvbqtrnpfatAqKOxNSRmDoTU4tZmp439gdsF2MM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287890031</pqid></control><display><type>article</type><title>High‐Density Sb2Te3 Nanopillars Arrays by Templated, Bottom‐Up MOCVD Growth</title><source>Wiley</source><creator>Cecchini, Raimondo ; Gajjela, Raja S. R. ; Martella, Christian ; Wiemer, Claudia ; Lamperti, Alessio ; Nasi, Lucia ; Lazzarini, Laura ; Nobili, Luca G. ; Longo, Massimo</creator><creatorcontrib>Cecchini, Raimondo ; Gajjela, Raja S. R. ; Martella, Christian ; Wiemer, Claudia ; Lamperti, Alessio ; Nasi, Lucia ; Lazzarini, Laura ; Nobili, Luca G. ; Longo, Massimo</creatorcontrib><description>Sb2Te3 exhibits several technologically relevant properties, such as high thermoelectric efficiency, topological insulator character, and phase change memory behavior. Improved performances are observed and novel effects are predicted for this and other chalcogenide alloys when synthetized in the form of high‐aspect‐ratio nanostructures. The ability to grow chalcogenide nanowires and nanopillars (NPs) with high crystal quality in a controlled fashion, in terms of their size and position, can boost the realization of novel thermoelectric, spintronic, and memory devices. Here, it is shown that highly dense arrays of ultrascaled Sb2Te3 NPs can be grown by metal organic chemical vapor deposition (MOCVD) on patterned substrates. In particular, crystalline Sb2Te3 NPs with a diameter of 20 nm and a height of 200 nm are obtained in Au‐functionalized, anodized aluminum oxide (AAO) templates with a pore density of ≈5 × 1010 cm−2. Also, MOCVD growth of Sb2Te3 can be followed either by mechanical polishing and chemical etching to produce Sb2Te3 NPs arrays with planar surfaces or by chemical dissolution of the AAO templates to obtain freestanding Sb2Te3 NPs forests. The illustrated growth method can be further scaled to smaller pore sizes and employed for other MOCVD‐grown chalcogenide alloys and patterned substrates. Sb2Te3 nanostructures are grown by metal organic chemical vapor deposition (MOCVD) to form dense arrays: 20 nm single‐crystal Sb2Te3 nanopillars are grown by MOCVD inside high density (5 × 1010 cm−2) pores of aluminum oxide membranes. High‐density forests of freestanding Sb2Te3 nanopillars are also obtained. These methods can be used for different chalcogenide alloys and substrates.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201901743</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>AAO templates ; Aluminum oxide ; Arrays ; Chalcogenides ; Chemical etching ; Density ; Mechanical polishing ; Memory devices ; Metalorganic chemical vapor deposition ; MOCVD ; nanopillars ; Nanotechnology ; Nanowires ; Organic chemicals ; Organic chemistry ; Performance enhancement ; Phase transitions ; Sb2Te3 ; Substrates ; Thermoelectricity</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (37), p.n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6364-8184 ; 0000-0003-2061-2963 ; 0000-0003-1811-165X ; 0000-0003-3650-2478 ; 0000-0001-5346-4026 ; 0000-0001-9975-0458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Cecchini, Raimondo</creatorcontrib><creatorcontrib>Gajjela, Raja S. R.</creatorcontrib><creatorcontrib>Martella, Christian</creatorcontrib><creatorcontrib>Wiemer, Claudia</creatorcontrib><creatorcontrib>Lamperti, Alessio</creatorcontrib><creatorcontrib>Nasi, Lucia</creatorcontrib><creatorcontrib>Lazzarini, Laura</creatorcontrib><creatorcontrib>Nobili, Luca G.</creatorcontrib><creatorcontrib>Longo, Massimo</creatorcontrib><title>High‐Density Sb2Te3 Nanopillars Arrays by Templated, Bottom‐Up MOCVD Growth</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Sb2Te3 exhibits several technologically relevant properties, such as high thermoelectric efficiency, topological insulator character, and phase change memory behavior. Improved performances are observed and novel effects are predicted for this and other chalcogenide alloys when synthetized in the form of high‐aspect‐ratio nanostructures. The ability to grow chalcogenide nanowires and nanopillars (NPs) with high crystal quality in a controlled fashion, in terms of their size and position, can boost the realization of novel thermoelectric, spintronic, and memory devices. Here, it is shown that highly dense arrays of ultrascaled Sb2Te3 NPs can be grown by metal organic chemical vapor deposition (MOCVD) on patterned substrates. In particular, crystalline Sb2Te3 NPs with a diameter of 20 nm and a height of 200 nm are obtained in Au‐functionalized, anodized aluminum oxide (AAO) templates with a pore density of ≈5 × 1010 cm−2. Also, MOCVD growth of Sb2Te3 can be followed either by mechanical polishing and chemical etching to produce Sb2Te3 NPs arrays with planar surfaces or by chemical dissolution of the AAO templates to obtain freestanding Sb2Te3 NPs forests. The illustrated growth method can be further scaled to smaller pore sizes and employed for other MOCVD‐grown chalcogenide alloys and patterned substrates. Sb2Te3 nanostructures are grown by metal organic chemical vapor deposition (MOCVD) to form dense arrays: 20 nm single‐crystal Sb2Te3 nanopillars are grown by MOCVD inside high density (5 × 1010 cm−2) pores of aluminum oxide membranes. High‐density forests of freestanding Sb2Te3 nanopillars are also obtained. These methods can be used for different chalcogenide alloys and substrates.</description><subject>AAO templates</subject><subject>Aluminum oxide</subject><subject>Arrays</subject><subject>Chalcogenides</subject><subject>Chemical etching</subject><subject>Density</subject><subject>Mechanical polishing</subject><subject>Memory devices</subject><subject>Metalorganic chemical vapor deposition</subject><subject>MOCVD</subject><subject>nanopillars</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Performance enhancement</subject><subject>Phase transitions</subject><subject>Sb2Te3</subject><subject>Substrates</subject><subject>Thermoelectricity</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kEFPAjEQhRujiYhePTfx6mKn3dLtEQHBZJED4LVp3VaW7LJru4TszZ_gb_SXCMFwmjfJezN5H0L3QHpACH0KZVH0KAFJQMTsAnWgDyzqJ1RenjWQa3QTwoYQBjQWHTSf5p_r3--fkd2GvGnxwtClZfhNb6s6LwrtAx54r9uATYuXtqwL3djsET9XTVOVh-CqxrP58H2EJ77aN-tbdOV0Eezd_-yi1ct4OZxG6XzyOhykUU0FYxEXLHOO6yTmDozhzrrYWGKhL5zhOhYWdMJjCZkAI0hiLOUgMuY-TCa51KyLHk53a1997Wxo1Kba-e3hpaI0EYk8Njy45Mm1zwvbqtrnpfatAqKOxNSRmDoTU4tZmp439gdsF2MM</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Cecchini, Raimondo</creator><creator>Gajjela, Raja S. R.</creator><creator>Martella, Christian</creator><creator>Wiemer, Claudia</creator><creator>Lamperti, Alessio</creator><creator>Nasi, Lucia</creator><creator>Lazzarini, Laura</creator><creator>Nobili, Luca G.</creator><creator>Longo, Massimo</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6364-8184</orcidid><orcidid>https://orcid.org/0000-0003-2061-2963</orcidid><orcidid>https://orcid.org/0000-0003-1811-165X</orcidid><orcidid>https://orcid.org/0000-0003-3650-2478</orcidid><orcidid>https://orcid.org/0000-0001-5346-4026</orcidid><orcidid>https://orcid.org/0000-0001-9975-0458</orcidid></search><sort><creationdate>20190901</creationdate><title>High‐Density Sb2Te3 Nanopillars Arrays by Templated, Bottom‐Up MOCVD Growth</title><author>Cecchini, Raimondo ; Gajjela, Raja S. R. ; Martella, Christian ; Wiemer, Claudia ; Lamperti, Alessio ; Nasi, Lucia ; Lazzarini, Laura ; Nobili, Luca G. ; Longo, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2733-573dff5a845f1bb5fef4be0e167fb5a47e1a85491d71b708be2517d3fcbd959a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AAO templates</topic><topic>Aluminum oxide</topic><topic>Arrays</topic><topic>Chalcogenides</topic><topic>Chemical etching</topic><topic>Density</topic><topic>Mechanical polishing</topic><topic>Memory devices</topic><topic>Metalorganic chemical vapor deposition</topic><topic>MOCVD</topic><topic>nanopillars</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Performance enhancement</topic><topic>Phase transitions</topic><topic>Sb2Te3</topic><topic>Substrates</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cecchini, Raimondo</creatorcontrib><creatorcontrib>Gajjela, Raja S. R.</creatorcontrib><creatorcontrib>Martella, Christian</creatorcontrib><creatorcontrib>Wiemer, Claudia</creatorcontrib><creatorcontrib>Lamperti, Alessio</creatorcontrib><creatorcontrib>Nasi, Lucia</creatorcontrib><creatorcontrib>Lazzarini, Laura</creatorcontrib><creatorcontrib>Nobili, Luca G.</creatorcontrib><creatorcontrib>Longo, Massimo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cecchini, Raimondo</au><au>Gajjela, Raja S. R.</au><au>Martella, Christian</au><au>Wiemer, Claudia</au><au>Lamperti, Alessio</au><au>Nasi, Lucia</au><au>Lazzarini, Laura</au><au>Nobili, Luca G.</au><au>Longo, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Density Sb2Te3 Nanopillars Arrays by Templated, Bottom‐Up MOCVD Growth</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>15</volume><issue>37</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Sb2Te3 exhibits several technologically relevant properties, such as high thermoelectric efficiency, topological insulator character, and phase change memory behavior. Improved performances are observed and novel effects are predicted for this and other chalcogenide alloys when synthetized in the form of high‐aspect‐ratio nanostructures. The ability to grow chalcogenide nanowires and nanopillars (NPs) with high crystal quality in a controlled fashion, in terms of their size and position, can boost the realization of novel thermoelectric, spintronic, and memory devices. Here, it is shown that highly dense arrays of ultrascaled Sb2Te3 NPs can be grown by metal organic chemical vapor deposition (MOCVD) on patterned substrates. In particular, crystalline Sb2Te3 NPs with a diameter of 20 nm and a height of 200 nm are obtained in Au‐functionalized, anodized aluminum oxide (AAO) templates with a pore density of ≈5 × 1010 cm−2. Also, MOCVD growth of Sb2Te3 can be followed either by mechanical polishing and chemical etching to produce Sb2Te3 NPs arrays with planar surfaces or by chemical dissolution of the AAO templates to obtain freestanding Sb2Te3 NPs forests. The illustrated growth method can be further scaled to smaller pore sizes and employed for other MOCVD‐grown chalcogenide alloys and patterned substrates. Sb2Te3 nanostructures are grown by metal organic chemical vapor deposition (MOCVD) to form dense arrays: 20 nm single‐crystal Sb2Te3 nanopillars are grown by MOCVD inside high density (5 × 1010 cm−2) pores of aluminum oxide membranes. High‐density forests of freestanding Sb2Te3 nanopillars are also obtained. These methods can be used for different chalcogenide alloys and substrates.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.201901743</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6364-8184</orcidid><orcidid>https://orcid.org/0000-0003-2061-2963</orcidid><orcidid>https://orcid.org/0000-0003-1811-165X</orcidid><orcidid>https://orcid.org/0000-0003-3650-2478</orcidid><orcidid>https://orcid.org/0000-0001-5346-4026</orcidid><orcidid>https://orcid.org/0000-0001-9975-0458</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (37), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2287890031
source Wiley
subjects AAO templates
Aluminum oxide
Arrays
Chalcogenides
Chemical etching
Density
Mechanical polishing
Memory devices
Metalorganic chemical vapor deposition
MOCVD
nanopillars
Nanotechnology
Nanowires
Organic chemicals
Organic chemistry
Performance enhancement
Phase transitions
Sb2Te3
Substrates
Thermoelectricity
title High‐Density Sb2Te3 Nanopillars Arrays by Templated, Bottom‐Up MOCVD Growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Density%20Sb2Te3%20Nanopillars%20Arrays%20by%20Templated,%20Bottom%E2%80%90Up%20MOCVD%20Growth&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cecchini,%20Raimondo&rft.date=2019-09-01&rft.volume=15&rft.issue=37&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201901743&rft_dat=%3Cproquest_wiley%3E2287890031%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2733-573dff5a845f1bb5fef4be0e167fb5a47e1a85491d71b708be2517d3fcbd959a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287890031&rft_id=info:pmid/&rfr_iscdi=true