Loading…
Combined linkage and association mapping of putative QTLs controlling black tea quality and drought tolerance traits
The advancements in genotyping have opened new approaches for identification and precise mapping of quantitative trait loci (QTLs) in plants, particularly by combining linkage and association mapping (AM) analysis. In this study, a combination of linkage and the AM approach was used to identify and...
Saved in:
Published in: | Euphytica 2019-10, Vol.215 (10), p.1-19, Article 162 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The advancements in genotyping have opened new approaches for identification and precise mapping of quantitative trait loci (QTLs) in plants, particularly by combining linkage and association mapping (AM) analysis. In this study, a combination of linkage and the AM approach was used to identify and authenticate putative QTLs associated with black tea quality traits and percent relative water content (%RWC). The population structure analysis clustered two parents and their respective 261 F1 progenies from the two reciprocal crosses into two clusters with 141 tea accessions in cluster one and 122 tea accessions in cluster two. The two clusters were of mixed origin with tea accessions in population TRFK St. 504 clustering together with tea accessions in population TRFK St. 524. A total of 71 putative QTLs linked to black tea quality traits and %RWC were detected in interval mapping (IM) method and were used as cofactors in multiple QTL model (MQM) mapping where 46 putative QTLs were detected. The phenotypic variance for each QTL ranged from 2.8 to 23.3% in IM and 4.1 to 23% in MQM mapping. Using Q-model and Q + K-model in AM, a total of 49 DArTseq markers were associated with 16 phenotypic traits. Significant marker-trait association in AM were similar to those obtained in IM, and MQM mapping except for six more putative QTLs detected in AM which are involved in biosynthesis of secondary metabolites, carbon fixation and abiotic stress. The combined linkage and AM approach appears to have great potential to improve the selection of desirable traits in tea breeding. |
---|---|
ISSN: | 0014-2336 1573-5060 |
DOI: | 10.1007/s10681-019-2483-5 |