Loading…
Slow Coarsening in Jammed Athermal Soft Particle Suspensions
We simulate a densely jammed, athermal assembly of repulsive soft particles immersed in a solvent. Starting from an initial condition corresponding to a quench from a high temperature, we find nontrivial slow dynamics driven by a gradual release of stored elastic energy, with the root mean squared p...
Saved in:
Published in: | Physical review letters 2019-09, Vol.123 (10), p.108001, Article 108001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We simulate a densely jammed, athermal assembly of repulsive soft particles immersed in a solvent. Starting from an initial condition corresponding to a quench from a high temperature, we find nontrivial slow dynamics driven by a gradual release of stored elastic energy, with the root mean squared particle speed decaying as a power law in time with a fractional exponent. This decay is accompanied by the presence within the assembly of spatially localized and temporally intermittent "hot spots" of nonaffine deformation, connected by long-ranged swirls in the velocity field, reminiscent of the local plastic events and long-ranged elastic propagation that have been intensively studied in sheared amorphous materials. The pattern of hot spots progressively coarsens, with the hot-spot size and separation slowly growing over time, and the associated correlation length in particle speed increasing as a sublinear power law. Each individual spot, however, exists only transiently within an overall picture of strongly intermittent dynamics. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.123.108001 |