Loading…
Evolution of initial discontinuity for the defocusing complex modified KdV equation
The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts...
Saved in:
Published in: | Nonlinear dynamics 2019-10, Vol.98 (1), p.691-702 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3 |
container_end_page | 702 |
container_issue | 1 |
container_start_page | 691 |
container_title | Nonlinear dynamics |
container_volume | 98 |
creator | Kong, Liang-Qian Wang, Lei Wang, Deng-Shan Dai, Chao-Qing Wen, Xiao-Yong Xu, Ling |
description | The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrödinger equation: the bidirectionality of defocusing nonlinear Schrödinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrödinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory. |
doi_str_mv | 10.1007/s11071-019-05222-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289138800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289138800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2EljL1FVHqISCx7qzoodp7hK49ZOEO3XkxIkdqxmc--5mkPIJcI1AuQ3ERFyTABlAhljLNkfkRFmOU_YRC6OyQgkSxOQsDglZzGuAIAzECPyMvv0ddc631BfUde41hU1LV00vmld07l2RysfaPthaWkrb7romiU1fr2p7Rdd-9JVzpb0qXyndtsVB9I5OamKOtqL3zsmb3ez1-lDMn--f5zezhPDUbYJ5yi0FqUUMjclFplkmTRYIKSF1sjSXHOrESzXaWVyRGmtkJCXZqJ1xjUfk6uBuwl-29nYqpXvQtNPKsaERC5E_-aYsCFlgo8x2EptglsXYacQ1EGeGuSpXp76kaf2fYkPpdiHm6UNf-h_Wt8o5HO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289138800</pqid></control><display><type>article</type><title>Evolution of initial discontinuity for the defocusing complex modified KdV equation</title><source>Springer Link</source><creator>Kong, Liang-Qian ; Wang, Lei ; Wang, Deng-Shan ; Dai, Chao-Qing ; Wen, Xiao-Yong ; Xu, Ling</creator><creatorcontrib>Kong, Liang-Qian ; Wang, Lei ; Wang, Deng-Shan ; Dai, Chao-Qing ; Wen, Xiao-Yong ; Xu, Ling</creatorcontrib><description>The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrödinger equation: the bidirectionality of defocusing nonlinear Schrödinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrödinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05222-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Classification ; Computer simulation ; Control ; Defocusing ; Dynamical Systems ; Engineering ; Evolution ; Fluid mechanics ; Korteweg-Devries equation ; Linear equations ; Mechanical Engineering ; Original Paper ; Rarefaction ; Schrodinger equation ; Shock waves ; Vibration ; Wave dispersion</subject><ispartof>Nonlinear dynamics, 2019-10, Vol.98 (1), p.691-702</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3</citedby><cites>FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kong, Liang-Qian</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Deng-Shan</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Xu, Ling</creatorcontrib><title>Evolution of initial discontinuity for the defocusing complex modified KdV equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrödinger equation: the bidirectionality of defocusing nonlinear Schrödinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrödinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Defocusing</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Fluid mechanics</subject><subject>Korteweg-Devries equation</subject><subject>Linear equations</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Rarefaction</subject><subject>Schrodinger equation</subject><subject>Shock waves</subject><subject>Vibration</subject><subject>Wave dispersion</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2EljL1FVHqISCx7qzoodp7hK49ZOEO3XkxIkdqxmc--5mkPIJcI1AuQ3ERFyTABlAhljLNkfkRFmOU_YRC6OyQgkSxOQsDglZzGuAIAzECPyMvv0ddc631BfUde41hU1LV00vmld07l2RysfaPthaWkrb7romiU1fr2p7Rdd-9JVzpb0qXyndtsVB9I5OamKOtqL3zsmb3ez1-lDMn--f5zezhPDUbYJ5yi0FqUUMjclFplkmTRYIKSF1sjSXHOrESzXaWVyRGmtkJCXZqJ1xjUfk6uBuwl-29nYqpXvQtNPKsaERC5E_-aYsCFlgo8x2EptglsXYacQ1EGeGuSpXp76kaf2fYkPpdiHm6UNf-h_Wt8o5HO4</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kong, Liang-Qian</creator><creator>Wang, Lei</creator><creator>Wang, Deng-Shan</creator><creator>Dai, Chao-Qing</creator><creator>Wen, Xiao-Yong</creator><creator>Xu, Ling</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Evolution of initial discontinuity for the defocusing complex modified KdV equation</title><author>Kong, Liang-Qian ; Wang, Lei ; Wang, Deng-Shan ; Dai, Chao-Qing ; Wen, Xiao-Yong ; Xu, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Defocusing</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Fluid mechanics</topic><topic>Korteweg-Devries equation</topic><topic>Linear equations</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Rarefaction</topic><topic>Schrodinger equation</topic><topic>Shock waves</topic><topic>Vibration</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Liang-Qian</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Deng-Shan</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Xu, Ling</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Liang-Qian</au><au>Wang, Lei</au><au>Wang, Deng-Shan</au><au>Dai, Chao-Qing</au><au>Wen, Xiao-Yong</au><au>Xu, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of initial discontinuity for the defocusing complex modified KdV equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>98</volume><issue>1</issue><spage>691</spage><epage>702</epage><pages>691-702</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrödinger equation: the bidirectionality of defocusing nonlinear Schrödinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrödinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05222-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2019-10, Vol.98 (1), p.691-702 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2289138800 |
source | Springer Link |
subjects | Automotive Engineering Classical Mechanics Classification Computer simulation Control Defocusing Dynamical Systems Engineering Evolution Fluid mechanics Korteweg-Devries equation Linear equations Mechanical Engineering Original Paper Rarefaction Schrodinger equation Shock waves Vibration Wave dispersion |
title | Evolution of initial discontinuity for the defocusing complex modified KdV equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20initial%20discontinuity%20for%20the%20defocusing%20complex%20modified%20KdV%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Kong,%20Liang-Qian&rft.date=2019-10-01&rft.volume=98&rft.issue=1&rft.spage=691&rft.epage=702&rft.pages=691-702&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05222-z&rft_dat=%3Cproquest_cross%3E2289138800%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289138800&rft_id=info:pmid/&rfr_iscdi=true |