Loading…

Evolution of initial discontinuity for the defocusing complex modified KdV equation

The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2019-10, Vol.98 (1), p.691-702
Main Authors: Kong, Liang-Qian, Wang, Lei, Wang, Deng-Shan, Dai, Chao-Qing, Wen, Xiao-Yong, Xu, Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3
cites cdi_FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3
container_end_page 702
container_issue 1
container_start_page 691
container_title Nonlinear dynamics
container_volume 98
creator Kong, Liang-Qian
Wang, Lei
Wang, Deng-Shan
Dai, Chao-Qing
Wen, Xiao-Yong
Xu, Ling
description The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrödinger equation: the bidirectionality of defocusing nonlinear Schrödinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrödinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory.
doi_str_mv 10.1007/s11071-019-05222-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289138800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289138800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2EljL1FVHqISCx7qzoodp7hK49ZOEO3XkxIkdqxmc--5mkPIJcI1AuQ3ERFyTABlAhljLNkfkRFmOU_YRC6OyQgkSxOQsDglZzGuAIAzECPyMvv0ddc631BfUde41hU1LV00vmld07l2RysfaPthaWkrb7romiU1fr2p7Rdd-9JVzpb0qXyndtsVB9I5OamKOtqL3zsmb3ez1-lDMn--f5zezhPDUbYJ5yi0FqUUMjclFplkmTRYIKSF1sjSXHOrESzXaWVyRGmtkJCXZqJ1xjUfk6uBuwl-29nYqpXvQtNPKsaERC5E_-aYsCFlgo8x2EptglsXYacQ1EGeGuSpXp76kaf2fYkPpdiHm6UNf-h_Wt8o5HO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289138800</pqid></control><display><type>article</type><title>Evolution of initial discontinuity for the defocusing complex modified KdV equation</title><source>Springer Link</source><creator>Kong, Liang-Qian ; Wang, Lei ; Wang, Deng-Shan ; Dai, Chao-Qing ; Wen, Xiao-Yong ; Xu, Ling</creator><creatorcontrib>Kong, Liang-Qian ; Wang, Lei ; Wang, Deng-Shan ; Dai, Chao-Qing ; Wen, Xiao-Yong ; Xu, Ling</creatorcontrib><description>The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrödinger equation: the bidirectionality of defocusing nonlinear Schrödinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrödinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05222-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Classification ; Computer simulation ; Control ; Defocusing ; Dynamical Systems ; Engineering ; Evolution ; Fluid mechanics ; Korteweg-Devries equation ; Linear equations ; Mechanical Engineering ; Original Paper ; Rarefaction ; Schrodinger equation ; Shock waves ; Vibration ; Wave dispersion</subject><ispartof>Nonlinear dynamics, 2019-10, Vol.98 (1), p.691-702</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3</citedby><cites>FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kong, Liang-Qian</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Deng-Shan</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Xu, Ling</creatorcontrib><title>Evolution of initial discontinuity for the defocusing complex modified KdV equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrödinger equation: the bidirectionality of defocusing nonlinear Schrödinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrödinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Defocusing</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Fluid mechanics</subject><subject>Korteweg-Devries equation</subject><subject>Linear equations</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Rarefaction</subject><subject>Schrodinger equation</subject><subject>Shock waves</subject><subject>Vibration</subject><subject>Wave dispersion</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2EljL1FVHqISCx7qzoodp7hK49ZOEO3XkxIkdqxmc--5mkPIJcI1AuQ3ERFyTABlAhljLNkfkRFmOU_YRC6OyQgkSxOQsDglZzGuAIAzECPyMvv0ddc631BfUde41hU1LV00vmld07l2RysfaPthaWkrb7romiU1fr2p7Rdd-9JVzpb0qXyndtsVB9I5OamKOtqL3zsmb3ez1-lDMn--f5zezhPDUbYJ5yi0FqUUMjclFplkmTRYIKSF1sjSXHOrESzXaWVyRGmtkJCXZqJ1xjUfk6uBuwl-29nYqpXvQtNPKsaERC5E_-aYsCFlgo8x2EptglsXYacQ1EGeGuSpXp76kaf2fYkPpdiHm6UNf-h_Wt8o5HO4</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kong, Liang-Qian</creator><creator>Wang, Lei</creator><creator>Wang, Deng-Shan</creator><creator>Dai, Chao-Qing</creator><creator>Wen, Xiao-Yong</creator><creator>Xu, Ling</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Evolution of initial discontinuity for the defocusing complex modified KdV equation</title><author>Kong, Liang-Qian ; Wang, Lei ; Wang, Deng-Shan ; Dai, Chao-Qing ; Wen, Xiao-Yong ; Xu, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Defocusing</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Fluid mechanics</topic><topic>Korteweg-Devries equation</topic><topic>Linear equations</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Rarefaction</topic><topic>Schrodinger equation</topic><topic>Shock waves</topic><topic>Vibration</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Liang-Qian</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Deng-Shan</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Xu, Ling</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Liang-Qian</au><au>Wang, Lei</au><au>Wang, Deng-Shan</au><au>Dai, Chao-Qing</au><au>Wen, Xiao-Yong</au><au>Xu, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of initial discontinuity for the defocusing complex modified KdV equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>98</volume><issue>1</issue><spage>691</spage><epage>702</epage><pages>691-702</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrödinger equation: the bidirectionality of defocusing nonlinear Schrödinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrödinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05222-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2019-10, Vol.98 (1), p.691-702
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2289138800
source Springer Link
subjects Automotive Engineering
Classical Mechanics
Classification
Computer simulation
Control
Defocusing
Dynamical Systems
Engineering
Evolution
Fluid mechanics
Korteweg-Devries equation
Linear equations
Mechanical Engineering
Original Paper
Rarefaction
Schrodinger equation
Shock waves
Vibration
Wave dispersion
title Evolution of initial discontinuity for the defocusing complex modified KdV equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20initial%20discontinuity%20for%20the%20defocusing%20complex%20modified%20KdV%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Kong,%20Liang-Qian&rft.date=2019-10-01&rft.volume=98&rft.issue=1&rft.spage=691&rft.epage=702&rft.pages=691-702&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05222-z&rft_dat=%3Cproquest_cross%3E2289138800%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3318bb8d9897cd1a59259c1a104abb1247b3eb10e3b4fc7119ee8907dc6bb53b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289138800&rft_id=info:pmid/&rfr_iscdi=true