Loading…

RGO/PDA/Bi12O17Cl2–TiO2 composite membranes based on Bi12O17Cl2–TiO2 heterojunctions with excellent photocatalytic activity for photocatalytic dyes degradation and oil–water separation

In the study, the reduced graphene oxide/graphitic Bi 12 O 17 Cl 2 –TiO 2 heterojunctions sheet membrane(RGO/PDA/Bi 12 O 17 Cl 2 –TiO 2 ) was fabricated by the dopamine modification and assembling the RGO/PDA/Bi 12 O 17 Cl 2 –TiO 2 composites on the surface of commercial CA(cellulose acetate) membra...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2019-10, Vol.30 (19), p.18246-18258
Main Authors: Yu, Zongxue, Feng, XiaoFang, Min, Xia, Li, XiuHui, Shao, LiangYan, Zeng, HaoJie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the study, the reduced graphene oxide/graphitic Bi 12 O 17 Cl 2 –TiO 2 heterojunctions sheet membrane(RGO/PDA/Bi 12 O 17 Cl 2 –TiO 2 ) was fabricated by the dopamine modification and assembling the RGO/PDA/Bi 12 O 17 Cl 2 –TiO 2 composites on the surface of commercial CA(cellulose acetate) membrane to degrade methylene blue (MB) and p-chlorophenol (4-CP) to harmless products. These membrane materials were comprehensively characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results showed that RGO/PDA/Bi 12 O 17 Cl 2 –TiO 2 nanofiber membrane exhibited extremely high degradation performance with a good distribution of RGO/PDA/Bi 12 O 17 Cl 2 –TiO 2 on the CA nanofiber membrane surface. Besides, the complete photodegradation of 100 mL MB (15 mg L −1 ) solution and 100 mL 4-CP (15 mg L −1 ) solution with artificial visible-light was achieved after 100 min and 160 min, respectively. The RGO/PDA/Bi 12 O 17 Cl 2 –TiO 2 -CA composite membrane revealed the ability of continuous and simultaneous flow-through separation of oil/water emulsion and degradation of soluble organic dye under visible-light irradiation in a short time. Moreover, the nanofiber membranes exhibited excellent stability and reusability for MB-containing oil–water mixed emulsion separation has great potential to be applied in industrial application.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-019-02179-y