Loading…
Ecological network metrics: opportunities for synthesis
Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network...
Saved in:
Published in: | Ecosphere (Washington, D.C) D.C), 2017-08, Vol.8 (8), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | |
container_title | Ecosphere (Washington, D.C) |
container_volume | 8 |
creator | Lau, Matthew K. Borrett, Stuart R. Baiser, Benjamin Gotelli, Nicholas J. Ellison, Aaron M. |
description | Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological complexity, these advances have come at the cost of introducing new challenges, including new theoretical concepts and metrics, and increased data complexity and computational intensity. Synthesizing recent developments in the network ecology literature, we point to several potential solutions to these issues: integrating network metrics and their terminology across sub‐disciplines; benchmarking new network algorithms and models to increase mechanistic understanding; and improving tools for sharing ecological network research, in particular “model” data provenance, to increase the reproducibility of network models and analyses. We propose that applying these solutions will aid in synthesizing ecological sub‐disciplines and allied fields by improving the accessibility of network methods and models. |
doi_str_mv | 10.1002/ecs2.1900 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2290030021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290030021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EElFIwT84iYriEj_vQYeiEJAiUQC15fjW4HA5H7ZP0f17HEJBwza7xTc7mkHomuA5wZguQAc6JzXGZ2hCicB5VVNx_ue-RLMQdjiN4GXF2QSVK-1a9261arMO4sH5z2wP0Vsd7jLX987HobPRQsiM81kYu_gBwYYrdGFUG2D2u6fo7WH1unzMN8_rp-X9JteMUZyXpta6UMmM1caIihScgGi2omAVJmBUU9UGN5wXWsF2WwOpABdlYxSnXDBgU3Rz-tt79zVAiHLnBt8lS0lpSspSbpKo2xOlvQvBg5G9t3vlR0mwPFYjj9XIYzWJXZzYg21h_B-Uq-UL_VF8A_1OZKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290030021</pqid></control><display><type>article</type><title>Ecological network metrics: opportunities for synthesis</title><source>Wiley-Blackwell Open Access Collection</source><source>ProQuest - Publicly Available Content Database</source><creator>Lau, Matthew K. ; Borrett, Stuart R. ; Baiser, Benjamin ; Gotelli, Nicholas J. ; Ellison, Aaron M.</creator><creatorcontrib>Lau, Matthew K. ; Borrett, Stuart R. ; Baiser, Benjamin ; Gotelli, Nicholas J. ; Ellison, Aaron M.</creatorcontrib><description>Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological complexity, these advances have come at the cost of introducing new challenges, including new theoretical concepts and metrics, and increased data complexity and computational intensity. Synthesizing recent developments in the network ecology literature, we point to several potential solutions to these issues: integrating network metrics and their terminology across sub‐disciplines; benchmarking new network algorithms and models to increase mechanistic understanding; and improving tools for sharing ecological network research, in particular “model” data provenance, to increase the reproducibility of network models and analyses. We propose that applying these solutions will aid in synthesizing ecological sub‐disciplines and allied fields by improving the accessibility of network methods and models.</description><identifier>ISSN: 2150-8925</identifier><identifier>EISSN: 2150-8925</identifier><identifier>DOI: 10.1002/ecs2.1900</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Algorithms ; benchmarking ; Biodiversity ; computation ; data provenance ; Ecology ; Ecosystems ; Engineers ; metrics ; network ecology ; Researchers ; Species diversity ; Studies ; systems analysis</subject><ispartof>Ecosphere (Washington, D.C), 2017-08, Vol.8 (8), p.n/a</ispartof><rights>2017 Lau et al.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3</citedby><cites>FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3</cites><orcidid>0000-0003-4151-6081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290030021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290030021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11561,25752,27923,27924,37011,44589,46051,46475,74897</link.rule.ids></links><search><creatorcontrib>Lau, Matthew K.</creatorcontrib><creatorcontrib>Borrett, Stuart R.</creatorcontrib><creatorcontrib>Baiser, Benjamin</creatorcontrib><creatorcontrib>Gotelli, Nicholas J.</creatorcontrib><creatorcontrib>Ellison, Aaron M.</creatorcontrib><title>Ecological network metrics: opportunities for synthesis</title><title>Ecosphere (Washington, D.C)</title><description>Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological complexity, these advances have come at the cost of introducing new challenges, including new theoretical concepts and metrics, and increased data complexity and computational intensity. Synthesizing recent developments in the network ecology literature, we point to several potential solutions to these issues: integrating network metrics and their terminology across sub‐disciplines; benchmarking new network algorithms and models to increase mechanistic understanding; and improving tools for sharing ecological network research, in particular “model” data provenance, to increase the reproducibility of network models and analyses. We propose that applying these solutions will aid in synthesizing ecological sub‐disciplines and allied fields by improving the accessibility of network methods and models.</description><subject>Algorithms</subject><subject>benchmarking</subject><subject>Biodiversity</subject><subject>computation</subject><subject>data provenance</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Engineers</subject><subject>metrics</subject><subject>network ecology</subject><subject>Researchers</subject><subject>Species diversity</subject><subject>Studies</subject><subject>systems analysis</subject><issn>2150-8925</issn><issn>2150-8925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kDtPAzEQhC0EElFIwT84iYriEj_vQYeiEJAiUQC15fjW4HA5H7ZP0f17HEJBwza7xTc7mkHomuA5wZguQAc6JzXGZ2hCicB5VVNx_ue-RLMQdjiN4GXF2QSVK-1a9261arMO4sH5z2wP0Vsd7jLX987HobPRQsiM81kYu_gBwYYrdGFUG2D2u6fo7WH1unzMN8_rp-X9JteMUZyXpta6UMmM1caIihScgGi2omAVJmBUU9UGN5wXWsF2WwOpABdlYxSnXDBgU3Rz-tt79zVAiHLnBt8lS0lpSspSbpKo2xOlvQvBg5G9t3vlR0mwPFYjj9XIYzWJXZzYg21h_B-Uq-UL_VF8A_1OZKo</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Lau, Matthew K.</creator><creator>Borrett, Stuart R.</creator><creator>Baiser, Benjamin</creator><creator>Gotelli, Nicholas J.</creator><creator>Ellison, Aaron M.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4151-6081</orcidid></search><sort><creationdate>201708</creationdate><title>Ecological network metrics: opportunities for synthesis</title><author>Lau, Matthew K. ; Borrett, Stuart R. ; Baiser, Benjamin ; Gotelli, Nicholas J. ; Ellison, Aaron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>benchmarking</topic><topic>Biodiversity</topic><topic>computation</topic><topic>data provenance</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Engineers</topic><topic>metrics</topic><topic>network ecology</topic><topic>Researchers</topic><topic>Species diversity</topic><topic>Studies</topic><topic>systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Matthew K.</creatorcontrib><creatorcontrib>Borrett, Stuart R.</creatorcontrib><creatorcontrib>Baiser, Benjamin</creatorcontrib><creatorcontrib>Gotelli, Nicholas J.</creatorcontrib><creatorcontrib>Ellison, Aaron M.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Ecosphere (Washington, D.C)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Matthew K.</au><au>Borrett, Stuart R.</au><au>Baiser, Benjamin</au><au>Gotelli, Nicholas J.</au><au>Ellison, Aaron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological network metrics: opportunities for synthesis</atitle><jtitle>Ecosphere (Washington, D.C)</jtitle><date>2017-08</date><risdate>2017</risdate><volume>8</volume><issue>8</issue><epage>n/a</epage><issn>2150-8925</issn><eissn>2150-8925</eissn><abstract>Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological complexity, these advances have come at the cost of introducing new challenges, including new theoretical concepts and metrics, and increased data complexity and computational intensity. Synthesizing recent developments in the network ecology literature, we point to several potential solutions to these issues: integrating network metrics and their terminology across sub‐disciplines; benchmarking new network algorithms and models to increase mechanistic understanding; and improving tools for sharing ecological network research, in particular “model” data provenance, to increase the reproducibility of network models and analyses. We propose that applying these solutions will aid in synthesizing ecological sub‐disciplines and allied fields by improving the accessibility of network methods and models.</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ecs2.1900</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4151-6081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8925 |
ispartof | Ecosphere (Washington, D.C), 2017-08, Vol.8 (8), p.n/a |
issn | 2150-8925 2150-8925 |
language | eng |
recordid | cdi_proquest_journals_2290030021 |
source | Wiley-Blackwell Open Access Collection; ProQuest - Publicly Available Content Database |
subjects | Algorithms benchmarking Biodiversity computation data provenance Ecology Ecosystems Engineers metrics network ecology Researchers Species diversity Studies systems analysis |
title | Ecological network metrics: opportunities for synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20network%20metrics:%20opportunities%20for%20synthesis&rft.jtitle=Ecosphere%20(Washington,%20D.C)&rft.au=Lau,%20Matthew%20K.&rft.date=2017-08&rft.volume=8&rft.issue=8&rft.epage=n/a&rft.issn=2150-8925&rft.eissn=2150-8925&rft_id=info:doi/10.1002/ecs2.1900&rft_dat=%3Cproquest_cross%3E2290030021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290030021&rft_id=info:pmid/&rfr_iscdi=true |