Loading…

Ecological network metrics: opportunities for synthesis

Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network...

Full description

Saved in:
Bibliographic Details
Published in:Ecosphere (Washington, D.C) D.C), 2017-08, Vol.8 (8), p.n/a
Main Authors: Lau, Matthew K., Borrett, Stuart R., Baiser, Benjamin, Gotelli, Nicholas J., Ellison, Aaron M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3
cites cdi_FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3
container_end_page n/a
container_issue 8
container_start_page
container_title Ecosphere (Washington, D.C)
container_volume 8
creator Lau, Matthew K.
Borrett, Stuart R.
Baiser, Benjamin
Gotelli, Nicholas J.
Ellison, Aaron M.
description Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological complexity, these advances have come at the cost of introducing new challenges, including new theoretical concepts and metrics, and increased data complexity and computational intensity. Synthesizing recent developments in the network ecology literature, we point to several potential solutions to these issues: integrating network metrics and their terminology across sub‐disciplines; benchmarking new network algorithms and models to increase mechanistic understanding; and improving tools for sharing ecological network research, in particular “model” data provenance, to increase the reproducibility of network models and analyses. We propose that applying these solutions will aid in synthesizing ecological sub‐disciplines and allied fields by improving the accessibility of network methods and models.
doi_str_mv 10.1002/ecs2.1900
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2290030021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290030021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EElFIwT84iYriEj_vQYeiEJAiUQC15fjW4HA5H7ZP0f17HEJBwza7xTc7mkHomuA5wZguQAc6JzXGZ2hCicB5VVNx_ue-RLMQdjiN4GXF2QSVK-1a9261arMO4sH5z2wP0Vsd7jLX987HobPRQsiM81kYu_gBwYYrdGFUG2D2u6fo7WH1unzMN8_rp-X9JteMUZyXpta6UMmM1caIihScgGi2omAVJmBUU9UGN5wXWsF2WwOpABdlYxSnXDBgU3Rz-tt79zVAiHLnBt8lS0lpSspSbpKo2xOlvQvBg5G9t3vlR0mwPFYjj9XIYzWJXZzYg21h_B-Uq-UL_VF8A_1OZKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290030021</pqid></control><display><type>article</type><title>Ecological network metrics: opportunities for synthesis</title><source>Wiley-Blackwell Open Access Collection</source><source>ProQuest - Publicly Available Content Database</source><creator>Lau, Matthew K. ; Borrett, Stuart R. ; Baiser, Benjamin ; Gotelli, Nicholas J. ; Ellison, Aaron M.</creator><creatorcontrib>Lau, Matthew K. ; Borrett, Stuart R. ; Baiser, Benjamin ; Gotelli, Nicholas J. ; Ellison, Aaron M.</creatorcontrib><description>Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological complexity, these advances have come at the cost of introducing new challenges, including new theoretical concepts and metrics, and increased data complexity and computational intensity. Synthesizing recent developments in the network ecology literature, we point to several potential solutions to these issues: integrating network metrics and their terminology across sub‐disciplines; benchmarking new network algorithms and models to increase mechanistic understanding; and improving tools for sharing ecological network research, in particular “model” data provenance, to increase the reproducibility of network models and analyses. We propose that applying these solutions will aid in synthesizing ecological sub‐disciplines and allied fields by improving the accessibility of network methods and models.</description><identifier>ISSN: 2150-8925</identifier><identifier>EISSN: 2150-8925</identifier><identifier>DOI: 10.1002/ecs2.1900</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; benchmarking ; Biodiversity ; computation ; data provenance ; Ecology ; Ecosystems ; Engineers ; metrics ; network ecology ; Researchers ; Species diversity ; Studies ; systems analysis</subject><ispartof>Ecosphere (Washington, D.C), 2017-08, Vol.8 (8), p.n/a</ispartof><rights>2017 Lau et al.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3</citedby><cites>FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3</cites><orcidid>0000-0003-4151-6081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290030021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290030021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11561,25752,27923,27924,37011,44589,46051,46475,74897</link.rule.ids></links><search><creatorcontrib>Lau, Matthew K.</creatorcontrib><creatorcontrib>Borrett, Stuart R.</creatorcontrib><creatorcontrib>Baiser, Benjamin</creatorcontrib><creatorcontrib>Gotelli, Nicholas J.</creatorcontrib><creatorcontrib>Ellison, Aaron M.</creatorcontrib><title>Ecological network metrics: opportunities for synthesis</title><title>Ecosphere (Washington, D.C)</title><description>Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological complexity, these advances have come at the cost of introducing new challenges, including new theoretical concepts and metrics, and increased data complexity and computational intensity. Synthesizing recent developments in the network ecology literature, we point to several potential solutions to these issues: integrating network metrics and their terminology across sub‐disciplines; benchmarking new network algorithms and models to increase mechanistic understanding; and improving tools for sharing ecological network research, in particular “model” data provenance, to increase the reproducibility of network models and analyses. We propose that applying these solutions will aid in synthesizing ecological sub‐disciplines and allied fields by improving the accessibility of network methods and models.</description><subject>Algorithms</subject><subject>benchmarking</subject><subject>Biodiversity</subject><subject>computation</subject><subject>data provenance</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Engineers</subject><subject>metrics</subject><subject>network ecology</subject><subject>Researchers</subject><subject>Species diversity</subject><subject>Studies</subject><subject>systems analysis</subject><issn>2150-8925</issn><issn>2150-8925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kDtPAzEQhC0EElFIwT84iYriEj_vQYeiEJAiUQC15fjW4HA5H7ZP0f17HEJBwza7xTc7mkHomuA5wZguQAc6JzXGZ2hCicB5VVNx_ue-RLMQdjiN4GXF2QSVK-1a9261arMO4sH5z2wP0Vsd7jLX987HobPRQsiM81kYu_gBwYYrdGFUG2D2u6fo7WH1unzMN8_rp-X9JteMUZyXpta6UMmM1caIihScgGi2omAVJmBUU9UGN5wXWsF2WwOpABdlYxSnXDBgU3Rz-tt79zVAiHLnBt8lS0lpSspSbpKo2xOlvQvBg5G9t3vlR0mwPFYjj9XIYzWJXZzYg21h_B-Uq-UL_VF8A_1OZKo</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Lau, Matthew K.</creator><creator>Borrett, Stuart R.</creator><creator>Baiser, Benjamin</creator><creator>Gotelli, Nicholas J.</creator><creator>Ellison, Aaron M.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4151-6081</orcidid></search><sort><creationdate>201708</creationdate><title>Ecological network metrics: opportunities for synthesis</title><author>Lau, Matthew K. ; Borrett, Stuart R. ; Baiser, Benjamin ; Gotelli, Nicholas J. ; Ellison, Aaron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>benchmarking</topic><topic>Biodiversity</topic><topic>computation</topic><topic>data provenance</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Engineers</topic><topic>metrics</topic><topic>network ecology</topic><topic>Researchers</topic><topic>Species diversity</topic><topic>Studies</topic><topic>systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Matthew K.</creatorcontrib><creatorcontrib>Borrett, Stuart R.</creatorcontrib><creatorcontrib>Baiser, Benjamin</creatorcontrib><creatorcontrib>Gotelli, Nicholas J.</creatorcontrib><creatorcontrib>Ellison, Aaron M.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Ecosphere (Washington, D.C)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Matthew K.</au><au>Borrett, Stuart R.</au><au>Baiser, Benjamin</au><au>Gotelli, Nicholas J.</au><au>Ellison, Aaron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological network metrics: opportunities for synthesis</atitle><jtitle>Ecosphere (Washington, D.C)</jtitle><date>2017-08</date><risdate>2017</risdate><volume>8</volume><issue>8</issue><epage>n/a</epage><issn>2150-8925</issn><eissn>2150-8925</eissn><abstract>Network ecology provides a systems basis for approaching ecological questions, such as factors that influence biological diversity, the role of particular species or particular traits in structuring ecosystems, and long‐term ecological dynamics (e.g., stability). Whereas the introduction of network theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological complexity, these advances have come at the cost of introducing new challenges, including new theoretical concepts and metrics, and increased data complexity and computational intensity. Synthesizing recent developments in the network ecology literature, we point to several potential solutions to these issues: integrating network metrics and their terminology across sub‐disciplines; benchmarking new network algorithms and models to increase mechanistic understanding; and improving tools for sharing ecological network research, in particular “model” data provenance, to increase the reproducibility of network models and analyses. We propose that applying these solutions will aid in synthesizing ecological sub‐disciplines and allied fields by improving the accessibility of network methods and models.</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ecs2.1900</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4151-6081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2150-8925
ispartof Ecosphere (Washington, D.C), 2017-08, Vol.8 (8), p.n/a
issn 2150-8925
2150-8925
language eng
recordid cdi_proquest_journals_2290030021
source Wiley-Blackwell Open Access Collection; ProQuest - Publicly Available Content Database
subjects Algorithms
benchmarking
Biodiversity
computation
data provenance
Ecology
Ecosystems
Engineers
metrics
network ecology
Researchers
Species diversity
Studies
systems analysis
title Ecological network metrics: opportunities for synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20network%20metrics:%20opportunities%20for%20synthesis&rft.jtitle=Ecosphere%20(Washington,%20D.C)&rft.au=Lau,%20Matthew%20K.&rft.date=2017-08&rft.volume=8&rft.issue=8&rft.epage=n/a&rft.issn=2150-8925&rft.eissn=2150-8925&rft_id=info:doi/10.1002/ecs2.1900&rft_dat=%3Cproquest_cross%3E2290030021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3320-7f9cc6a47839ff581641e5db563801efad89f0d446caebb9e18e067dfa42453e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290030021&rft_id=info:pmid/&rfr_iscdi=true