Loading…
Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation
We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following e...
Saved in:
Published in: | arXiv.org 2019-09 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gicquaud, Romain |
description | We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following earlier results, we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2290223630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290223630</sourcerecordid><originalsourceid>FETCH-proquest_journals_22902236303</originalsourceid><addsrcrecordid>eNqNy8FKgzEQBOAgCC3ad1jouRATW9uzKB48ePBe0nTLvyXNpptNyy_47gbxATwNzDdzY6bO-4fF-tG5iZnVerTWutWTWy791Hx_CNYotMM9ZM5QuJLSBaHGkIJAbHIJ2gShY6jjqSgrdUsjDGNB2XGiCKeQ6cBpX-FKOkAopbdBqZ-UQQeEd4pDRuErxS_Ac_vFe3N7CKni7C_vzPz15fP5bVGEzw2rbo_cJHfaOrexzvmVt_5_qx9kM1Gp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290223630</pqid></control><display><type>article</type><title>Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation</title><source>Publicly Available Content (ProQuest)</source><creator>Gicquaud, Romain</creator><creatorcontrib>Gicquaud, Romain</creatorcontrib><description>We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following earlier results, we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Curvature ; Manifolds</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2290223630?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Gicquaud, Romain</creatorcontrib><title>Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation</title><title>arXiv.org</title><description>We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following earlier results, we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.</description><subject>Asymptotic properties</subject><subject>Curvature</subject><subject>Manifolds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy8FKgzEQBOAgCC3ad1jouRATW9uzKB48ePBe0nTLvyXNpptNyy_47gbxATwNzDdzY6bO-4fF-tG5iZnVerTWutWTWy791Hx_CNYotMM9ZM5QuJLSBaHGkIJAbHIJ2gShY6jjqSgrdUsjDGNB2XGiCKeQ6cBpX-FKOkAopbdBqZ-UQQeEd4pDRuErxS_Ac_vFe3N7CKni7C_vzPz15fP5bVGEzw2rbo_cJHfaOrexzvmVt_5_qx9kM1Gp</recordid><startdate>20190911</startdate><enddate>20190911</enddate><creator>Gicquaud, Romain</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190911</creationdate><title>Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation</title><author>Gicquaud, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22902236303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Curvature</topic><topic>Manifolds</topic><toplevel>online_resources</toplevel><creatorcontrib>Gicquaud, Romain</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gicquaud, Romain</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation</atitle><jtitle>arXiv.org</jtitle><date>2019-09-11</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following earlier results, we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2290223630 |
source | Publicly Available Content (ProQuest) |
subjects | Asymptotic properties Curvature Manifolds |
title | Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Prescribed%20non%20positive%20scalar%20curvature%20on%20asymptotically%20hyperbolic%20manifolds%20with%20application%20to%20the%20Lichnerowicz%20equation&rft.jtitle=arXiv.org&rft.au=Gicquaud,%20Romain&rft.date=2019-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2290223630%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22902236303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290223630&rft_id=info:pmid/&rfr_iscdi=true |