Loading…

Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation

We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following e...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-09
Main Author: Gicquaud, Romain
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gicquaud, Romain
description We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following earlier results, we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2290223630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290223630</sourcerecordid><originalsourceid>FETCH-proquest_journals_22902236303</originalsourceid><addsrcrecordid>eNqNy8FKgzEQBOAgCC3ad1jouRATW9uzKB48ePBe0nTLvyXNpptNyy_47gbxATwNzDdzY6bO-4fF-tG5iZnVerTWutWTWy791Hx_CNYotMM9ZM5QuJLSBaHGkIJAbHIJ2gShY6jjqSgrdUsjDGNB2XGiCKeQ6cBpX-FKOkAopbdBqZ-UQQeEd4pDRuErxS_Ac_vFe3N7CKni7C_vzPz15fP5bVGEzw2rbo_cJHfaOrexzvmVt_5_qx9kM1Gp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290223630</pqid></control><display><type>article</type><title>Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation</title><source>Publicly Available Content (ProQuest)</source><creator>Gicquaud, Romain</creator><creatorcontrib>Gicquaud, Romain</creatorcontrib><description>We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following earlier results, we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Curvature ; Manifolds</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2290223630?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Gicquaud, Romain</creatorcontrib><title>Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation</title><title>arXiv.org</title><description>We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following earlier results, we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.</description><subject>Asymptotic properties</subject><subject>Curvature</subject><subject>Manifolds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy8FKgzEQBOAgCC3ad1jouRATW9uzKB48ePBe0nTLvyXNpptNyy_47gbxATwNzDdzY6bO-4fF-tG5iZnVerTWutWTWy791Hx_CNYotMM9ZM5QuJLSBaHGkIJAbHIJ2gShY6jjqSgrdUsjDGNB2XGiCKeQ6cBpX-FKOkAopbdBqZ-UQQeEd4pDRuErxS_Ac_vFe3N7CKni7C_vzPz15fP5bVGEzw2rbo_cJHfaOrexzvmVt_5_qx9kM1Gp</recordid><startdate>20190911</startdate><enddate>20190911</enddate><creator>Gicquaud, Romain</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190911</creationdate><title>Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation</title><author>Gicquaud, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22902236303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Curvature</topic><topic>Manifolds</topic><toplevel>online_resources</toplevel><creatorcontrib>Gicquaud, Romain</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gicquaud, Romain</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation</atitle><jtitle>arXiv.org</jtitle><date>2019-09-11</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study the prescribed scalar curvature problem, namely finding which function can be obtained as the scalar curvature of a metric in a given conformal class. We deal with the case of asymptotically hyperbolic manifolds and restrict ourselves to non positive prescribed scalar curvature. Following earlier results, we obtain a necessary and sufficient condition on the zero set of the prescribed scalar curvature so that the problem admits a (unique) solution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2290223630
source Publicly Available Content (ProQuest)
subjects Asymptotic properties
Curvature
Manifolds
title Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Prescribed%20non%20positive%20scalar%20curvature%20on%20asymptotically%20hyperbolic%20manifolds%20with%20application%20to%20the%20Lichnerowicz%20equation&rft.jtitle=arXiv.org&rft.au=Gicquaud,%20Romain&rft.date=2019-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2290223630%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22902236303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290223630&rft_id=info:pmid/&rfr_iscdi=true