Loading…

Nanostructured kesterite (Cu2ZnSnS4) for applications in thermoelectric devices

Kesterite (Cu2ZnSnS4, CZTS) powders were produced by reactive high-energy milling, starting from stoichiometric mixtures of the elemental components. CZTS forms fine crystals with a cubic structure, which evolves to the stable tetragonal form after thermal treatment. Tablets were produced by cold pr...

Full description

Saved in:
Bibliographic Details
Published in:Powder diffraction 2019-09, Vol.34 (S1), p.S42-S47
Main Authors: Isotta, E., Pugno, N. M., Scardi, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Kesterite (Cu2ZnSnS4, CZTS) powders were produced by reactive high-energy milling, starting from stoichiometric mixtures of the elemental components. CZTS forms fine crystals with a cubic structure, which evolves to the stable tetragonal form after thermal treatment. Tablets were produced by cold pressing of the ball milled powder, and sintered up to 660 °C. Seebeck coefficient, electrical resistivity, and thermal diffusivity were measured on the sintered tablets, pointing out the positive effect of CZTS nanostructure and of the rather large fraction of porosity: thermal conductivity is rather low (from ~0.8 W/(m K) at 20 °C to ~0.42 W/(m K) at 500 °C), while electrical conduction is not seriously hindered (electrical resistivity from ~8500 µΩ m at 40 °C to ~2000 µΩ m at 400 °C). Preliminary results of thermoelectric behavior are promising.
ISSN:0885-7156
1945-7413
DOI:10.1017/S0885715619000277