Loading…
Quantum mechanics on Riemannian manifold in Schwinger's quantization approach II
The extended Schwinger quantization procedure is used for constructing quantum mechanics on a manifold with a group structure. The considered manifold M is a homogeneous Riemannian space with the given action of an isometry transformation group. Using the identification of M with the quotient space...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2001-07, Vol.21 (3), p.587-595 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-ad78b997ffccd80736c9c35c4b097af85330f188d9279a07108d580ffcd8e2e83 |
---|---|
cites | |
container_end_page | 595 |
container_issue | 3 |
container_start_page | 587 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 21 |
creator | Chepilko, N.M. Romanenko, A.V. |
description | The extended Schwinger quantization procedure is used for constructing quantum mechanics on a manifold with a group structure. The considered manifold M is a homogeneous Riemannian space with the given action of an isometry transformation group. Using the identification of M with the quotient space G/H, where H is the isotropy group of an arbitrary fixed point of M, we show that quantum mechanics on G/H possesses a gauge structure, described by a gauge potential that is the connection 1-form of the principal fiber bundle G(G/H, H). The coordinate representation of quantum mechanics and the procedure for selecting the physical sector of the states are developed. |
doi_str_mv | 10.1007/s100520100713 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2293980051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2293980051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-ad78b997ffccd80736c9c35c4b097af85330f188d9279a07108d580ffcd8e2e83</originalsourceid><addsrcrecordid>eNpVkMtLxDAQxoMouK4evQc8eKpOkj6Soyw-Cgu-zyGbJm6WbdpNWkT_elNWBC_zDcNv5mM-hM4JXBGA6jqmWlCYesIO0IzkLM_KNDr86_P8GJ3EuAEAmgOfoafnUflhbHFr9Fp5pyPuPH5xplXeO-VxUme7bYOdx696_en8hwmXEe-mPfetBpd41fehU3qN6_oUHVm1jebsV-fo_e72bfGQLR_v68XNMtO0ZEOmmoqvhKis1brhULFSC80Kna9AVMrygjGwhPNG0Eqo9BDwpuCQ8IYbajibo4v93eS8G00c5KYbg0-WklLBBE9ZkERle0qHLsZgrOyDa1X4kgTkFJT8Fxr7AaG6XoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293980051</pqid></control><display><type>article</type><title>Quantum mechanics on Riemannian manifold in Schwinger's quantization approach II</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Chepilko, N.M. ; Romanenko, A.V.</creator><creatorcontrib>Chepilko, N.M. ; Romanenko, A.V.</creatorcontrib><description>The extended Schwinger quantization procedure is used for constructing quantum mechanics on a manifold with a group structure. The considered manifold M is a homogeneous Riemannian space with the given action of an isometry transformation group. Using the identification of M with the quotient space G/H, where H is the isotropy group of an arbitrary fixed point of M, we show that quantum mechanics on G/H possesses a gauge structure, described by a gauge potential that is the connection 1-form of the principal fiber bundle G(G/H, H). The coordinate representation of quantum mechanics and the procedure for selecting the physical sector of the states are developed.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1007/s100520100713</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Isotropy ; Measurement ; Quantum mechanics ; Quantum physics ; Quotients ; Riemann manifold</subject><ispartof>The European physical journal. C, Particles and fields, 2001-07, Vol.21 (3), p.587-595</ispartof><rights>The European Physical Journal C - Particles and Fields is a copyright of Springer, (2001). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-ad78b997ffccd80736c9c35c4b097af85330f188d9279a07108d580ffcd8e2e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2293980051/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2293980051?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Chepilko, N.M.</creatorcontrib><creatorcontrib>Romanenko, A.V.</creatorcontrib><title>Quantum mechanics on Riemannian manifold in Schwinger's quantization approach II</title><title>The European physical journal. C, Particles and fields</title><description>The extended Schwinger quantization procedure is used for constructing quantum mechanics on a manifold with a group structure. The considered manifold M is a homogeneous Riemannian space with the given action of an isometry transformation group. Using the identification of M with the quotient space G/H, where H is the isotropy group of an arbitrary fixed point of M, we show that quantum mechanics on G/H possesses a gauge structure, described by a gauge potential that is the connection 1-form of the principal fiber bundle G(G/H, H). The coordinate representation of quantum mechanics and the procedure for selecting the physical sector of the states are developed.</description><subject>Isotropy</subject><subject>Measurement</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Quotients</subject><subject>Riemann manifold</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkMtLxDAQxoMouK4evQc8eKpOkj6Soyw-Cgu-zyGbJm6WbdpNWkT_elNWBC_zDcNv5mM-hM4JXBGA6jqmWlCYesIO0IzkLM_KNDr86_P8GJ3EuAEAmgOfoafnUflhbHFr9Fp5pyPuPH5xplXeO-VxUme7bYOdx696_en8hwmXEe-mPfetBpd41fehU3qN6_oUHVm1jebsV-fo_e72bfGQLR_v68XNMtO0ZEOmmoqvhKis1brhULFSC80Kna9AVMrygjGwhPNG0Eqo9BDwpuCQ8IYbajibo4v93eS8G00c5KYbg0-WklLBBE9ZkERle0qHLsZgrOyDa1X4kgTkFJT8Fxr7AaG6XoE</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Chepilko, N.M.</creator><creator>Romanenko, A.V.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20010701</creationdate><title>Quantum mechanics on Riemannian manifold in Schwinger's quantization approach II</title><author>Chepilko, N.M. ; Romanenko, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-ad78b997ffccd80736c9c35c4b097af85330f188d9279a07108d580ffcd8e2e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Isotropy</topic><topic>Measurement</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Quotients</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chepilko, N.M.</creatorcontrib><creatorcontrib>Romanenko, A.V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chepilko, N.M.</au><au>Romanenko, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum mechanics on Riemannian manifold in Schwinger's quantization approach II</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>21</volume><issue>3</issue><spage>587</spage><epage>595</epage><pages>587-595</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>The extended Schwinger quantization procedure is used for constructing quantum mechanics on a manifold with a group structure. The considered manifold M is a homogeneous Riemannian space with the given action of an isometry transformation group. Using the identification of M with the quotient space G/H, where H is the isotropy group of an arbitrary fixed point of M, we show that quantum mechanics on G/H possesses a gauge structure, described by a gauge potential that is the connection 1-form of the principal fiber bundle G(G/H, H). The coordinate representation of quantum mechanics and the procedure for selecting the physical sector of the states are developed.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s100520100713</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2001-07, Vol.21 (3), p.587-595 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_proquest_journals_2293980051 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Isotropy Measurement Quantum mechanics Quantum physics Quotients Riemann manifold |
title | Quantum mechanics on Riemannian manifold in Schwinger's quantization approach II |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20mechanics%20on%20Riemannian%20manifold%20in%20Schwinger's%20quantization%20approach%20II&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Chepilko,%20N.M.&rft.date=2001-07-01&rft.volume=21&rft.issue=3&rft.spage=587&rft.epage=595&rft.pages=587-595&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1007/s100520100713&rft_dat=%3Cproquest_cross%3E2293980051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-ad78b997ffccd80736c9c35c4b097af85330f188d9279a07108d580ffcd8e2e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2293980051&rft_id=info:pmid/&rfr_iscdi=true |