Loading…
Blow-up for Strauss type wave equation with damping and potential
We study a kind of nonlinear wave equations with damping and potential, whose coefficients are both critical in the sense of the scaling and depend only on the spatial variables. Based on the earlier works, one may think there are two kinds of blow-up phenomenons when the exponent of the nonlinear t...
Saved in:
Published in: | arXiv.org 2020-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dai, Wei Kubo, Hideo Sobajima, Motohiro |
description | We study a kind of nonlinear wave equations with damping and potential, whose coefficients are both critical in the sense of the scaling and depend only on the spatial variables. Based on the earlier works, one may think there are two kinds of blow-up phenomenons when the exponent of the nonlinear term is small. It also means there are two kinds of law to determine the critical exponent. In this paper, we obtain a blow-up result and get the estimate of the upper bound of the lifespan in critical and sub-critical cases. All of the results support such a conjecture, although for now, the existence part is still open. |
doi_str_mv | 10.48550/arxiv.1909.08885 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2294292243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2294292243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-13a09aaf8d03f3b45ac2d0eb106aaae77892ab2dbe5d868ad1424ab53c650ef83</originalsourceid><addsrcrecordid>eNotzU9LwzAYgPEgCI65D-At4Ln1zZukTY5z-A8GHtx9vF1S7ahJ16SrfnsFPT2338PYjYBSGa3hjsav7lwKC7YEY4y-YAuUUhRGIV6xVUpHAMCqRq3lgq3v-zgX08DbOPK3PNKUEs_fg-cznT33p4lyFwOfu_zBHX0OXXjnFBwfYvYhd9Rfs8uW-uRX_12y3ePDbvNcbF-fXjbrbUEaZSEkgSVqjQPZykZpOqAD3wioiMjXtbFIDbrGa2cqQ04oVNRoeag0-NbIJbv9Y4cxniaf8v4YpzH8HveIVqFFVFL-ABHLS_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294292243</pqid></control><display><type>article</type><title>Blow-up for Strauss type wave equation with damping and potential</title><source>Publicly Available Content Database</source><creator>Dai, Wei ; Kubo, Hideo ; Sobajima, Motohiro</creator><creatorcontrib>Dai, Wei ; Kubo, Hideo ; Sobajima, Motohiro</creatorcontrib><description>We study a kind of nonlinear wave equations with damping and potential, whose coefficients are both critical in the sense of the scaling and depend only on the spatial variables. Based on the earlier works, one may think there are two kinds of blow-up phenomenons when the exponent of the nonlinear term is small. It also means there are two kinds of law to determine the critical exponent. In this paper, we obtain a blow-up result and get the estimate of the upper bound of the lifespan in critical and sub-critical cases. All of the results support such a conjecture, although for now, the existence part is still open.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1909.08885</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Damping ; Nonlinear equations ; Upper bounds ; Wave equations</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2294292243?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Kubo, Hideo</creatorcontrib><creatorcontrib>Sobajima, Motohiro</creatorcontrib><title>Blow-up for Strauss type wave equation with damping and potential</title><title>arXiv.org</title><description>We study a kind of nonlinear wave equations with damping and potential, whose coefficients are both critical in the sense of the scaling and depend only on the spatial variables. Based on the earlier works, one may think there are two kinds of blow-up phenomenons when the exponent of the nonlinear term is small. It also means there are two kinds of law to determine the critical exponent. In this paper, we obtain a blow-up result and get the estimate of the upper bound of the lifespan in critical and sub-critical cases. All of the results support such a conjecture, although for now, the existence part is still open.</description><subject>Damping</subject><subject>Nonlinear equations</subject><subject>Upper bounds</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzU9LwzAYgPEgCI65D-At4Ln1zZukTY5z-A8GHtx9vF1S7ahJ16SrfnsFPT2338PYjYBSGa3hjsav7lwKC7YEY4y-YAuUUhRGIV6xVUpHAMCqRq3lgq3v-zgX08DbOPK3PNKUEs_fg-cznT33p4lyFwOfu_zBHX0OXXjnFBwfYvYhd9Rfs8uW-uRX_12y3ePDbvNcbF-fXjbrbUEaZSEkgSVqjQPZykZpOqAD3wioiMjXtbFIDbrGa2cqQ04oVNRoeag0-NbIJbv9Y4cxniaf8v4YpzH8HveIVqFFVFL-ABHLS_M</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Dai, Wei</creator><creator>Kubo, Hideo</creator><creator>Sobajima, Motohiro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201009</creationdate><title>Blow-up for Strauss type wave equation with damping and potential</title><author>Dai, Wei ; Kubo, Hideo ; Sobajima, Motohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-13a09aaf8d03f3b45ac2d0eb106aaae77892ab2dbe5d868ad1424ab53c650ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Damping</topic><topic>Nonlinear equations</topic><topic>Upper bounds</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Kubo, Hideo</creatorcontrib><creatorcontrib>Sobajima, Motohiro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wei</au><au>Kubo, Hideo</au><au>Sobajima, Motohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow-up for Strauss type wave equation with damping and potential</atitle><jtitle>arXiv.org</jtitle><date>2020-10-09</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study a kind of nonlinear wave equations with damping and potential, whose coefficients are both critical in the sense of the scaling and depend only on the spatial variables. Based on the earlier works, one may think there are two kinds of blow-up phenomenons when the exponent of the nonlinear term is small. It also means there are two kinds of law to determine the critical exponent. In this paper, we obtain a blow-up result and get the estimate of the upper bound of the lifespan in critical and sub-critical cases. All of the results support such a conjecture, although for now, the existence part is still open.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1909.08885</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2294292243 |
source | Publicly Available Content Database |
subjects | Damping Nonlinear equations Upper bounds Wave equations |
title | Blow-up for Strauss type wave equation with damping and potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow-up%20for%20Strauss%20type%20wave%20equation%20with%20damping%20and%20potential&rft.jtitle=arXiv.org&rft.au=Dai,%20Wei&rft.date=2020-10-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1909.08885&rft_dat=%3Cproquest%3E2294292243%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-13a09aaf8d03f3b45ac2d0eb106aaae77892ab2dbe5d868ad1424ab53c650ef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294292243&rft_id=info:pmid/&rfr_iscdi=true |