Loading…
High energy-density multi-form thermochemical energy storage based on multi-step sorption processes
A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy stor...
Saved in:
Published in: | Energy (Oxford) 2019-10, Vol.185, p.1131-1142 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3 |
container_end_page | 1142 |
container_issue | |
container_start_page | 1131 |
container_title | Energy (Oxford) |
container_volume | 185 |
creator | Xu, J.X. Li, T.X. Chao, J.W. Yan, T.S. Wang, R.Z. |
description | A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy storage of a salt hydrate, and the absorption energy storage of the salt solution. High-performance composite sorbent of MgCl2@zeolite was prepared to demonstrate the feasibility of the proposed multi-form thermochemical energy storage. The water uptake contributions of physisorption, chemisorption and absorption of the composite sorbent were measured by a “three-step” hydration method. The multi-step desorption processes measured by TG at an extremely slow heating rate shows the apparent decrease of decomposition temperature of MgCl2 hydrates in zeolite matrix. The maximum sorption capacity of the MgCl2@zeolite composite sorbent without solution leakage is as high as 0.55 g/g and its gravimetric and volumetric thermal energy densities reach 1368 kJ/kg and 308 kWh/m3 respectively with charging temperature of 200 °C. This gravimetric energy density is about 2.26 times higher than that of pure zeolite 13X. The experimental results verified that the proposed multi-form thermochemical energy storage is an effective method to improve sorption capacity and to achieve high energy-density thermal storage.
•Development of high energy-density multi-form thermochemical energy storage.•Description of multi-step physisorption, chemisorption and absorption processes.•Fabrication and performance analysis of MgCl2@zeolite composite sorbent.•Heat storage density is 1368 kJ/kg and 2.26 times higher than that of pure zeolite. |
doi_str_mv | 10.1016/j.energy.2019.07.076 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294472483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054421931415X</els_id><sourcerecordid>2294472483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3</originalsourceid><addsrcrecordid>eNp9UMlqwzAQFaWFpmn_oAdDz05Hi2XrUiihGwR6ac_ClseJTGy5klLI31fBORcGBoa3zHuE3FNYUaDysV_hiH57XDGgagVlGnlBFrQqeS7LqrgkC-AS8kIIdk1uQugBoKiUWhDzbre7bKbnLY7BxmM2HPbR5p3zQxZ36AdndjhYU-_PwCxE5-stZk0dsM3ceGaEiFMWnJ-iTbfJO4MhYLglV129D3h33kvy_frytX7PN59vH-vnTW54SWNODYMaBQql0nOsVW3RmAYazrjpFKqGF7IQvAMpW6gMrYEL0UDHFZNtpTq-JA-zbnL-OWCIuncHPyZLzZgSomSi4gklZpTxLgSPnZ68HWp_1BT0qU7d6zmmPtWpoUwjE-1ppmFK8GvR62AsjgZb69FE3Tr7v8AfHzOBvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294472483</pqid></control><display><type>article</type><title>High energy-density multi-form thermochemical energy storage based on multi-step sorption processes</title><source>ScienceDirect Freedom Collection</source><creator>Xu, J.X. ; Li, T.X. ; Chao, J.W. ; Yan, T.S. ; Wang, R.Z.</creator><creatorcontrib>Xu, J.X. ; Li, T.X. ; Chao, J.W. ; Yan, T.S. ; Wang, R.Z.</creatorcontrib><description>A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy storage of a salt hydrate, and the absorption energy storage of the salt solution. High-performance composite sorbent of MgCl2@zeolite was prepared to demonstrate the feasibility of the proposed multi-form thermochemical energy storage. The water uptake contributions of physisorption, chemisorption and absorption of the composite sorbent were measured by a “three-step” hydration method. The multi-step desorption processes measured by TG at an extremely slow heating rate shows the apparent decrease of decomposition temperature of MgCl2 hydrates in zeolite matrix. The maximum sorption capacity of the MgCl2@zeolite composite sorbent without solution leakage is as high as 0.55 g/g and its gravimetric and volumetric thermal energy densities reach 1368 kJ/kg and 308 kWh/m3 respectively with charging temperature of 200 °C. This gravimetric energy density is about 2.26 times higher than that of pure zeolite 13X. The experimental results verified that the proposed multi-form thermochemical energy storage is an effective method to improve sorption capacity and to achieve high energy-density thermal storage.
•Development of high energy-density multi-form thermochemical energy storage.•Description of multi-step physisorption, chemisorption and absorption processes.•Fabrication and performance analysis of MgCl2@zeolite composite sorbent.•Heat storage density is 1368 kJ/kg and 2.26 times higher than that of pure zeolite.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.07.076</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Absorption ; Chemisorption ; Composite sorbent ; Density ; Energy density ; Energy storage ; Flux density ; Gravimetry ; Heating rate ; Hydrates ; Magnesium chloride ; Organic chemistry ; Physisorption ; Porous media ; Saline solutions ; Sorbents ; Sorption ; Temperature ; Thermal energy ; Thermal storage ; Thermochemical energy storage ; Water uptake ; Zeolites</subject><ispartof>Energy (Oxford), 2019-10, Vol.185, p.1131-1142</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3</citedby><cites>FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3</cites><orcidid>0000-0003-4618-8144 ; 0000-0003-3586-5728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, J.X.</creatorcontrib><creatorcontrib>Li, T.X.</creatorcontrib><creatorcontrib>Chao, J.W.</creatorcontrib><creatorcontrib>Yan, T.S.</creatorcontrib><creatorcontrib>Wang, R.Z.</creatorcontrib><title>High energy-density multi-form thermochemical energy storage based on multi-step sorption processes</title><title>Energy (Oxford)</title><description>A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy storage of a salt hydrate, and the absorption energy storage of the salt solution. High-performance composite sorbent of MgCl2@zeolite was prepared to demonstrate the feasibility of the proposed multi-form thermochemical energy storage. The water uptake contributions of physisorption, chemisorption and absorption of the composite sorbent were measured by a “three-step” hydration method. The multi-step desorption processes measured by TG at an extremely slow heating rate shows the apparent decrease of decomposition temperature of MgCl2 hydrates in zeolite matrix. The maximum sorption capacity of the MgCl2@zeolite composite sorbent without solution leakage is as high as 0.55 g/g and its gravimetric and volumetric thermal energy densities reach 1368 kJ/kg and 308 kWh/m3 respectively with charging temperature of 200 °C. This gravimetric energy density is about 2.26 times higher than that of pure zeolite 13X. The experimental results verified that the proposed multi-form thermochemical energy storage is an effective method to improve sorption capacity and to achieve high energy-density thermal storage.
•Development of high energy-density multi-form thermochemical energy storage.•Description of multi-step physisorption, chemisorption and absorption processes.•Fabrication and performance analysis of MgCl2@zeolite composite sorbent.•Heat storage density is 1368 kJ/kg and 2.26 times higher than that of pure zeolite.</description><subject>Absorption</subject><subject>Chemisorption</subject><subject>Composite sorbent</subject><subject>Density</subject><subject>Energy density</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Gravimetry</subject><subject>Heating rate</subject><subject>Hydrates</subject><subject>Magnesium chloride</subject><subject>Organic chemistry</subject><subject>Physisorption</subject><subject>Porous media</subject><subject>Saline solutions</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Thermal storage</subject><subject>Thermochemical energy storage</subject><subject>Water uptake</subject><subject>Zeolites</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMlqwzAQFaWFpmn_oAdDz05Hi2XrUiihGwR6ac_ClseJTGy5klLI31fBORcGBoa3zHuE3FNYUaDysV_hiH57XDGgagVlGnlBFrQqeS7LqrgkC-AS8kIIdk1uQugBoKiUWhDzbre7bKbnLY7BxmM2HPbR5p3zQxZ36AdndjhYU-_PwCxE5-stZk0dsM3ceGaEiFMWnJ-iTbfJO4MhYLglV129D3h33kvy_frytX7PN59vH-vnTW54SWNODYMaBQql0nOsVW3RmAYazrjpFKqGF7IQvAMpW6gMrYEL0UDHFZNtpTq-JA-zbnL-OWCIuncHPyZLzZgSomSi4gklZpTxLgSPnZ68HWp_1BT0qU7d6zmmPtWpoUwjE-1ppmFK8GvR62AsjgZb69FE3Tr7v8AfHzOBvw</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Xu, J.X.</creator><creator>Li, T.X.</creator><creator>Chao, J.W.</creator><creator>Yan, T.S.</creator><creator>Wang, R.Z.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4618-8144</orcidid><orcidid>https://orcid.org/0000-0003-3586-5728</orcidid></search><sort><creationdate>20191015</creationdate><title>High energy-density multi-form thermochemical energy storage based on multi-step sorption processes</title><author>Xu, J.X. ; Li, T.X. ; Chao, J.W. ; Yan, T.S. ; Wang, R.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Chemisorption</topic><topic>Composite sorbent</topic><topic>Density</topic><topic>Energy density</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Gravimetry</topic><topic>Heating rate</topic><topic>Hydrates</topic><topic>Magnesium chloride</topic><topic>Organic chemistry</topic><topic>Physisorption</topic><topic>Porous media</topic><topic>Saline solutions</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Thermal storage</topic><topic>Thermochemical energy storage</topic><topic>Water uptake</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, J.X.</creatorcontrib><creatorcontrib>Li, T.X.</creatorcontrib><creatorcontrib>Chao, J.W.</creatorcontrib><creatorcontrib>Yan, T.S.</creatorcontrib><creatorcontrib>Wang, R.Z.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, J.X.</au><au>Li, T.X.</au><au>Chao, J.W.</au><au>Yan, T.S.</au><au>Wang, R.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy-density multi-form thermochemical energy storage based on multi-step sorption processes</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>185</volume><spage>1131</spage><epage>1142</epage><pages>1131-1142</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy storage of a salt hydrate, and the absorption energy storage of the salt solution. High-performance composite sorbent of MgCl2@zeolite was prepared to demonstrate the feasibility of the proposed multi-form thermochemical energy storage. The water uptake contributions of physisorption, chemisorption and absorption of the composite sorbent were measured by a “three-step” hydration method. The multi-step desorption processes measured by TG at an extremely slow heating rate shows the apparent decrease of decomposition temperature of MgCl2 hydrates in zeolite matrix. The maximum sorption capacity of the MgCl2@zeolite composite sorbent without solution leakage is as high as 0.55 g/g and its gravimetric and volumetric thermal energy densities reach 1368 kJ/kg and 308 kWh/m3 respectively with charging temperature of 200 °C. This gravimetric energy density is about 2.26 times higher than that of pure zeolite 13X. The experimental results verified that the proposed multi-form thermochemical energy storage is an effective method to improve sorption capacity and to achieve high energy-density thermal storage.
•Development of high energy-density multi-form thermochemical energy storage.•Description of multi-step physisorption, chemisorption and absorption processes.•Fabrication and performance analysis of MgCl2@zeolite composite sorbent.•Heat storage density is 1368 kJ/kg and 2.26 times higher than that of pure zeolite.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.07.076</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4618-8144</orcidid><orcidid>https://orcid.org/0000-0003-3586-5728</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-10, Vol.185, p.1131-1142 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2294472483 |
source | ScienceDirect Freedom Collection |
subjects | Absorption Chemisorption Composite sorbent Density Energy density Energy storage Flux density Gravimetry Heating rate Hydrates Magnesium chloride Organic chemistry Physisorption Porous media Saline solutions Sorbents Sorption Temperature Thermal energy Thermal storage Thermochemical energy storage Water uptake Zeolites |
title | High energy-density multi-form thermochemical energy storage based on multi-step sorption processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy-density%20multi-form%20thermochemical%20energy%20storage%20based%20on%20multi-step%20sorption%20processes&rft.jtitle=Energy%20(Oxford)&rft.au=Xu,%20J.X.&rft.date=2019-10-15&rft.volume=185&rft.spage=1131&rft.epage=1142&rft.pages=1131-1142&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.07.076&rft_dat=%3Cproquest_cross%3E2294472483%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294472483&rft_id=info:pmid/&rfr_iscdi=true |