Loading…

High energy-density multi-form thermochemical energy storage based on multi-step sorption processes

A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy stor...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2019-10, Vol.185, p.1131-1142
Main Authors: Xu, J.X., Li, T.X., Chao, J.W., Yan, T.S., Wang, R.Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3
cites cdi_FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3
container_end_page 1142
container_issue
container_start_page 1131
container_title Energy (Oxford)
container_volume 185
creator Xu, J.X.
Li, T.X.
Chao, J.W.
Yan, T.S.
Wang, R.Z.
description A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy storage of a salt hydrate, and the absorption energy storage of the salt solution. High-performance composite sorbent of MgCl2@zeolite was prepared to demonstrate the feasibility of the proposed multi-form thermochemical energy storage. The water uptake contributions of physisorption, chemisorption and absorption of the composite sorbent were measured by a “three-step” hydration method. The multi-step desorption processes measured by TG at an extremely slow heating rate shows the apparent decrease of decomposition temperature of MgCl2 hydrates in zeolite matrix. The maximum sorption capacity of the MgCl2@zeolite composite sorbent without solution leakage is as high as 0.55 g/g and its gravimetric and volumetric thermal energy densities reach 1368 kJ/kg and 308 kWh/m3 respectively with charging temperature of 200 °C. This gravimetric energy density is about 2.26 times higher than that of pure zeolite 13X. The experimental results verified that the proposed multi-form thermochemical energy storage is an effective method to improve sorption capacity and to achieve high energy-density thermal storage. •Development of high energy-density multi-form thermochemical energy storage.•Description of multi-step physisorption, chemisorption and absorption processes.•Fabrication and performance analysis of MgCl2@zeolite composite sorbent.•Heat storage density is 1368 kJ/kg and 2.26 times higher than that of pure zeolite.
doi_str_mv 10.1016/j.energy.2019.07.076
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294472483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054421931415X</els_id><sourcerecordid>2294472483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3</originalsourceid><addsrcrecordid>eNp9UMlqwzAQFaWFpmn_oAdDz05Hi2XrUiihGwR6ac_ClseJTGy5klLI31fBORcGBoa3zHuE3FNYUaDysV_hiH57XDGgagVlGnlBFrQqeS7LqrgkC-AS8kIIdk1uQugBoKiUWhDzbre7bKbnLY7BxmM2HPbR5p3zQxZ36AdndjhYU-_PwCxE5-stZk0dsM3ceGaEiFMWnJ-iTbfJO4MhYLglV129D3h33kvy_frytX7PN59vH-vnTW54SWNODYMaBQql0nOsVW3RmAYazrjpFKqGF7IQvAMpW6gMrYEL0UDHFZNtpTq-JA-zbnL-OWCIuncHPyZLzZgSomSi4gklZpTxLgSPnZ68HWp_1BT0qU7d6zmmPtWpoUwjE-1ppmFK8GvR62AsjgZb69FE3Tr7v8AfHzOBvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294472483</pqid></control><display><type>article</type><title>High energy-density multi-form thermochemical energy storage based on multi-step sorption processes</title><source>ScienceDirect Freedom Collection</source><creator>Xu, J.X. ; Li, T.X. ; Chao, J.W. ; Yan, T.S. ; Wang, R.Z.</creator><creatorcontrib>Xu, J.X. ; Li, T.X. ; Chao, J.W. ; Yan, T.S. ; Wang, R.Z.</creatorcontrib><description>A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy storage of a salt hydrate, and the absorption energy storage of the salt solution. High-performance composite sorbent of MgCl2@zeolite was prepared to demonstrate the feasibility of the proposed multi-form thermochemical energy storage. The water uptake contributions of physisorption, chemisorption and absorption of the composite sorbent were measured by a “three-step” hydration method. The multi-step desorption processes measured by TG at an extremely slow heating rate shows the apparent decrease of decomposition temperature of MgCl2 hydrates in zeolite matrix. The maximum sorption capacity of the MgCl2@zeolite composite sorbent without solution leakage is as high as 0.55 g/g and its gravimetric and volumetric thermal energy densities reach 1368 kJ/kg and 308 kWh/m3 respectively with charging temperature of 200 °C. This gravimetric energy density is about 2.26 times higher than that of pure zeolite 13X. The experimental results verified that the proposed multi-form thermochemical energy storage is an effective method to improve sorption capacity and to achieve high energy-density thermal storage. •Development of high energy-density multi-form thermochemical energy storage.•Description of multi-step physisorption, chemisorption and absorption processes.•Fabrication and performance analysis of MgCl2@zeolite composite sorbent.•Heat storage density is 1368 kJ/kg and 2.26 times higher than that of pure zeolite.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.07.076</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Absorption ; Chemisorption ; Composite sorbent ; Density ; Energy density ; Energy storage ; Flux density ; Gravimetry ; Heating rate ; Hydrates ; Magnesium chloride ; Organic chemistry ; Physisorption ; Porous media ; Saline solutions ; Sorbents ; Sorption ; Temperature ; Thermal energy ; Thermal storage ; Thermochemical energy storage ; Water uptake ; Zeolites</subject><ispartof>Energy (Oxford), 2019-10, Vol.185, p.1131-1142</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3</citedby><cites>FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3</cites><orcidid>0000-0003-4618-8144 ; 0000-0003-3586-5728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, J.X.</creatorcontrib><creatorcontrib>Li, T.X.</creatorcontrib><creatorcontrib>Chao, J.W.</creatorcontrib><creatorcontrib>Yan, T.S.</creatorcontrib><creatorcontrib>Wang, R.Z.</creatorcontrib><title>High energy-density multi-form thermochemical energy storage based on multi-step sorption processes</title><title>Energy (Oxford)</title><description>A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy storage of a salt hydrate, and the absorption energy storage of the salt solution. High-performance composite sorbent of MgCl2@zeolite was prepared to demonstrate the feasibility of the proposed multi-form thermochemical energy storage. The water uptake contributions of physisorption, chemisorption and absorption of the composite sorbent were measured by a “three-step” hydration method. The multi-step desorption processes measured by TG at an extremely slow heating rate shows the apparent decrease of decomposition temperature of MgCl2 hydrates in zeolite matrix. The maximum sorption capacity of the MgCl2@zeolite composite sorbent without solution leakage is as high as 0.55 g/g and its gravimetric and volumetric thermal energy densities reach 1368 kJ/kg and 308 kWh/m3 respectively with charging temperature of 200 °C. This gravimetric energy density is about 2.26 times higher than that of pure zeolite 13X. The experimental results verified that the proposed multi-form thermochemical energy storage is an effective method to improve sorption capacity and to achieve high energy-density thermal storage. •Development of high energy-density multi-form thermochemical energy storage.•Description of multi-step physisorption, chemisorption and absorption processes.•Fabrication and performance analysis of MgCl2@zeolite composite sorbent.•Heat storage density is 1368 kJ/kg and 2.26 times higher than that of pure zeolite.</description><subject>Absorption</subject><subject>Chemisorption</subject><subject>Composite sorbent</subject><subject>Density</subject><subject>Energy density</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Gravimetry</subject><subject>Heating rate</subject><subject>Hydrates</subject><subject>Magnesium chloride</subject><subject>Organic chemistry</subject><subject>Physisorption</subject><subject>Porous media</subject><subject>Saline solutions</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Thermal storage</subject><subject>Thermochemical energy storage</subject><subject>Water uptake</subject><subject>Zeolites</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMlqwzAQFaWFpmn_oAdDz05Hi2XrUiihGwR6ac_ClseJTGy5klLI31fBORcGBoa3zHuE3FNYUaDysV_hiH57XDGgagVlGnlBFrQqeS7LqrgkC-AS8kIIdk1uQugBoKiUWhDzbre7bKbnLY7BxmM2HPbR5p3zQxZ36AdndjhYU-_PwCxE5-stZk0dsM3ceGaEiFMWnJ-iTbfJO4MhYLglV129D3h33kvy_frytX7PN59vH-vnTW54SWNODYMaBQql0nOsVW3RmAYazrjpFKqGF7IQvAMpW6gMrYEL0UDHFZNtpTq-JA-zbnL-OWCIuncHPyZLzZgSomSi4gklZpTxLgSPnZ68HWp_1BT0qU7d6zmmPtWpoUwjE-1ppmFK8GvR62AsjgZb69FE3Tr7v8AfHzOBvw</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Xu, J.X.</creator><creator>Li, T.X.</creator><creator>Chao, J.W.</creator><creator>Yan, T.S.</creator><creator>Wang, R.Z.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4618-8144</orcidid><orcidid>https://orcid.org/0000-0003-3586-5728</orcidid></search><sort><creationdate>20191015</creationdate><title>High energy-density multi-form thermochemical energy storage based on multi-step sorption processes</title><author>Xu, J.X. ; Li, T.X. ; Chao, J.W. ; Yan, T.S. ; Wang, R.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Chemisorption</topic><topic>Composite sorbent</topic><topic>Density</topic><topic>Energy density</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Gravimetry</topic><topic>Heating rate</topic><topic>Hydrates</topic><topic>Magnesium chloride</topic><topic>Organic chemistry</topic><topic>Physisorption</topic><topic>Porous media</topic><topic>Saline solutions</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Thermal storage</topic><topic>Thermochemical energy storage</topic><topic>Water uptake</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, J.X.</creatorcontrib><creatorcontrib>Li, T.X.</creatorcontrib><creatorcontrib>Chao, J.W.</creatorcontrib><creatorcontrib>Yan, T.S.</creatorcontrib><creatorcontrib>Wang, R.Z.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, J.X.</au><au>Li, T.X.</au><au>Chao, J.W.</au><au>Yan, T.S.</au><au>Wang, R.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy-density multi-form thermochemical energy storage based on multi-step sorption processes</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>185</volume><spage>1131</spage><epage>1142</epage><pages>1131-1142</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>A novel multi-form thermochemical energy storage method is proposed for high energy-density thermal energy storage based on multi-step sorption processes. The proposed multi-form thermochemical energy storage combines the physisorption energy storage of a porous matrix, the chemisorption energy storage of a salt hydrate, and the absorption energy storage of the salt solution. High-performance composite sorbent of MgCl2@zeolite was prepared to demonstrate the feasibility of the proposed multi-form thermochemical energy storage. The water uptake contributions of physisorption, chemisorption and absorption of the composite sorbent were measured by a “three-step” hydration method. The multi-step desorption processes measured by TG at an extremely slow heating rate shows the apparent decrease of decomposition temperature of MgCl2 hydrates in zeolite matrix. The maximum sorption capacity of the MgCl2@zeolite composite sorbent without solution leakage is as high as 0.55 g/g and its gravimetric and volumetric thermal energy densities reach 1368 kJ/kg and 308 kWh/m3 respectively with charging temperature of 200 °C. This gravimetric energy density is about 2.26 times higher than that of pure zeolite 13X. The experimental results verified that the proposed multi-form thermochemical energy storage is an effective method to improve sorption capacity and to achieve high energy-density thermal storage. •Development of high energy-density multi-form thermochemical energy storage.•Description of multi-step physisorption, chemisorption and absorption processes.•Fabrication and performance analysis of MgCl2@zeolite composite sorbent.•Heat storage density is 1368 kJ/kg and 2.26 times higher than that of pure zeolite.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.07.076</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4618-8144</orcidid><orcidid>https://orcid.org/0000-0003-3586-5728</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-10, Vol.185, p.1131-1142
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2294472483
source ScienceDirect Freedom Collection
subjects Absorption
Chemisorption
Composite sorbent
Density
Energy density
Energy storage
Flux density
Gravimetry
Heating rate
Hydrates
Magnesium chloride
Organic chemistry
Physisorption
Porous media
Saline solutions
Sorbents
Sorption
Temperature
Thermal energy
Thermal storage
Thermochemical energy storage
Water uptake
Zeolites
title High energy-density multi-form thermochemical energy storage based on multi-step sorption processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy-density%20multi-form%20thermochemical%20energy%20storage%20based%20on%20multi-step%20sorption%20processes&rft.jtitle=Energy%20(Oxford)&rft.au=Xu,%20J.X.&rft.date=2019-10-15&rft.volume=185&rft.spage=1131&rft.epage=1142&rft.pages=1131-1142&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.07.076&rft_dat=%3Cproquest_cross%3E2294472483%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-1c20ae4e4990582d9d5bcb0b323cf9e9b356543f066d08c1a0344b0f3926d89f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294472483&rft_id=info:pmid/&rfr_iscdi=true