Loading…
Solving shifted linear systems with restarted GMRES augmented with error approximations
In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that all...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2019-09, Vol.78 (6), p.1910-1918 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53 |
container_end_page | 1918 |
container_issue | 6 |
container_start_page | 1910 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 78 |
creator | Wang, Rui-Rui Niu, Qiang Tang, Xiao-Bin Wang, Xiang |
description | In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that allows solving the seed and the added linear systems at the cost of only one matrix–vector multiplication per iteration. Compared with solving each added linear system separately, the advantage of the new scheme is to lower down the overall cost of solving all added linear systems. Numerical experiments illustrate the efficiency of the acceleration strategy. |
doi_str_mv | 10.1016/j.camwa.2019.03.037 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294473788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122119301622</els_id><sourcerecordid>2294473788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4CLwued83XbrIHD1JqFSqCVTyGNDtps7S7Ndm29t-bbT0LD4Zh5s178xC6JTgjmBT3dWb0eq8zikmZYRYhztCASMFSURTyHA2wLGVKKCWX6CqEGmPMGcUD9DVrVzvXLJKwdLaDKlm5BrRPwiF0sA7J3nXLxEPotO-nk9f38SzR28Uamr4_jsH71id6s_Htj1vrzrVNuEYXVq8C3PzVIfp8Gn-MntPp2-Rl9DhNDaNFlxaU5dzYQhKuiTBa8lzr3AImnOVzRq0lOTOC4aLgBkpSgiaVnIOQHBNsczZEd6e7Ufx7G32qut36JkoqSkvOBRNSxi122jK-DcGDVRsfnfqDIlj1CapaHRNUfYIKswgRWQ8nFsQHdg68CsZBY6ByHkynqtb9y_8FogV7EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294473788</pqid></control><display><type>article</type><title>Solving shifted linear systems with restarted GMRES augmented with error approximations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wang, Rui-Rui ; Niu, Qiang ; Tang, Xiao-Bin ; Wang, Xiang</creator><creatorcontrib>Wang, Rui-Rui ; Niu, Qiang ; Tang, Xiao-Bin ; Wang, Xiang</creatorcontrib><description>In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that allows solving the seed and the added linear systems at the cost of only one matrix–vector multiplication per iteration. Compared with solving each added linear system separately, the advantage of the new scheme is to lower down the overall cost of solving all added linear systems. Numerical experiments illustrate the efficiency of the acceleration strategy.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2019.03.037</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acceleration ; Added linear systems ; Error analysis ; Iterative methods ; Krylov subspace methods ; Linear systems ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Multiplication ; Restarted GMRES ; Restarting ; Subspaces</subject><ispartof>Computers & mathematics with applications (1987), 2019-09, Vol.78 (6), p.1910-1918</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Rui-Rui</creatorcontrib><creatorcontrib>Niu, Qiang</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><title>Solving shifted linear systems with restarted GMRES augmented with error approximations</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that allows solving the seed and the added linear systems at the cost of only one matrix–vector multiplication per iteration. Compared with solving each added linear system separately, the advantage of the new scheme is to lower down the overall cost of solving all added linear systems. Numerical experiments illustrate the efficiency of the acceleration strategy.</description><subject>Acceleration</subject><subject>Added linear systems</subject><subject>Error analysis</subject><subject>Iterative methods</subject><subject>Krylov subspace methods</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Multiplication</subject><subject>Restarted GMRES</subject><subject>Restarting</subject><subject>Subspaces</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4CLwued83XbrIHD1JqFSqCVTyGNDtps7S7Ndm29t-bbT0LD4Zh5s178xC6JTgjmBT3dWb0eq8zikmZYRYhztCASMFSURTyHA2wLGVKKCWX6CqEGmPMGcUD9DVrVzvXLJKwdLaDKlm5BrRPwiF0sA7J3nXLxEPotO-nk9f38SzR28Uamr4_jsH71id6s_Htj1vrzrVNuEYXVq8C3PzVIfp8Gn-MntPp2-Rl9DhNDaNFlxaU5dzYQhKuiTBa8lzr3AImnOVzRq0lOTOC4aLgBkpSgiaVnIOQHBNsczZEd6e7Ufx7G32qut36JkoqSkvOBRNSxi122jK-DcGDVRsfnfqDIlj1CapaHRNUfYIKswgRWQ8nFsQHdg68CsZBY6ByHkynqtb9y_8FogV7EQ</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Wang, Rui-Rui</creator><creator>Niu, Qiang</creator><creator>Tang, Xiao-Bin</creator><creator>Wang, Xiang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190915</creationdate><title>Solving shifted linear systems with restarted GMRES augmented with error approximations</title><author>Wang, Rui-Rui ; Niu, Qiang ; Tang, Xiao-Bin ; Wang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Added linear systems</topic><topic>Error analysis</topic><topic>Iterative methods</topic><topic>Krylov subspace methods</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Multiplication</topic><topic>Restarted GMRES</topic><topic>Restarting</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rui-Rui</creatorcontrib><creatorcontrib>Niu, Qiang</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rui-Rui</au><au>Niu, Qiang</au><au>Tang, Xiao-Bin</au><au>Wang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving shifted linear systems with restarted GMRES augmented with error approximations</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>78</volume><issue>6</issue><spage>1910</spage><epage>1918</epage><pages>1910-1918</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that allows solving the seed and the added linear systems at the cost of only one matrix–vector multiplication per iteration. Compared with solving each added linear system separately, the advantage of the new scheme is to lower down the overall cost of solving all added linear systems. Numerical experiments illustrate the efficiency of the acceleration strategy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2019.03.037</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2019-09, Vol.78 (6), p.1910-1918 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2294473788 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Acceleration Added linear systems Error analysis Iterative methods Krylov subspace methods Linear systems Mathematical analysis Matrix algebra Matrix methods Multiplication Restarted GMRES Restarting Subspaces |
title | Solving shifted linear systems with restarted GMRES augmented with error approximations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20shifted%20linear%20systems%20with%20restarted%20GMRES%20augmented%20with%20error%20approximations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Wang,%20Rui-Rui&rft.date=2019-09-15&rft.volume=78&rft.issue=6&rft.spage=1910&rft.epage=1918&rft.pages=1910-1918&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2019.03.037&rft_dat=%3Cproquest_cross%3E2294473788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294473788&rft_id=info:pmid/&rfr_iscdi=true |