Loading…

Solving shifted linear systems with restarted GMRES augmented with error approximations

In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that all...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2019-09, Vol.78 (6), p.1910-1918
Main Authors: Wang, Rui-Rui, Niu, Qiang, Tang, Xiao-Bin, Wang, Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53
container_end_page 1918
container_issue 6
container_start_page 1910
container_title Computers & mathematics with applications (1987)
container_volume 78
creator Wang, Rui-Rui
Niu, Qiang
Tang, Xiao-Bin
Wang, Xiang
description In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that allows solving the seed and the added linear systems at the cost of only one matrix–vector multiplication per iteration. Compared with solving each added linear system separately, the advantage of the new scheme is to lower down the overall cost of solving all added linear systems. Numerical experiments illustrate the efficiency of the acceleration strategy.
doi_str_mv 10.1016/j.camwa.2019.03.037
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294473788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122119301622</els_id><sourcerecordid>2294473788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4CLwued83XbrIHD1JqFSqCVTyGNDtps7S7Ndm29t-bbT0LD4Zh5s178xC6JTgjmBT3dWb0eq8zikmZYRYhztCASMFSURTyHA2wLGVKKCWX6CqEGmPMGcUD9DVrVzvXLJKwdLaDKlm5BrRPwiF0sA7J3nXLxEPotO-nk9f38SzR28Uamr4_jsH71id6s_Htj1vrzrVNuEYXVq8C3PzVIfp8Gn-MntPp2-Rl9DhNDaNFlxaU5dzYQhKuiTBa8lzr3AImnOVzRq0lOTOC4aLgBkpSgiaVnIOQHBNsczZEd6e7Ufx7G32qut36JkoqSkvOBRNSxi122jK-DcGDVRsfnfqDIlj1CapaHRNUfYIKswgRWQ8nFsQHdg68CsZBY6ByHkynqtb9y_8FogV7EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294473788</pqid></control><display><type>article</type><title>Solving shifted linear systems with restarted GMRES augmented with error approximations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wang, Rui-Rui ; Niu, Qiang ; Tang, Xiao-Bin ; Wang, Xiang</creator><creatorcontrib>Wang, Rui-Rui ; Niu, Qiang ; Tang, Xiao-Bin ; Wang, Xiang</creatorcontrib><description>In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that allows solving the seed and the added linear systems at the cost of only one matrix–vector multiplication per iteration. Compared with solving each added linear system separately, the advantage of the new scheme is to lower down the overall cost of solving all added linear systems. Numerical experiments illustrate the efficiency of the acceleration strategy.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2019.03.037</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acceleration ; Added linear systems ; Error analysis ; Iterative methods ; Krylov subspace methods ; Linear systems ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Multiplication ; Restarted GMRES ; Restarting ; Subspaces</subject><ispartof>Computers &amp; mathematics with applications (1987), 2019-09, Vol.78 (6), p.1910-1918</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Rui-Rui</creatorcontrib><creatorcontrib>Niu, Qiang</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><title>Solving shifted linear systems with restarted GMRES augmented with error approximations</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that allows solving the seed and the added linear systems at the cost of only one matrix–vector multiplication per iteration. Compared with solving each added linear system separately, the advantage of the new scheme is to lower down the overall cost of solving all added linear systems. Numerical experiments illustrate the efficiency of the acceleration strategy.</description><subject>Acceleration</subject><subject>Added linear systems</subject><subject>Error analysis</subject><subject>Iterative methods</subject><subject>Krylov subspace methods</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Multiplication</subject><subject>Restarted GMRES</subject><subject>Restarting</subject><subject>Subspaces</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4CLwued83XbrIHD1JqFSqCVTyGNDtps7S7Ndm29t-bbT0LD4Zh5s178xC6JTgjmBT3dWb0eq8zikmZYRYhztCASMFSURTyHA2wLGVKKCWX6CqEGmPMGcUD9DVrVzvXLJKwdLaDKlm5BrRPwiF0sA7J3nXLxEPotO-nk9f38SzR28Uamr4_jsH71id6s_Htj1vrzrVNuEYXVq8C3PzVIfp8Gn-MntPp2-Rl9DhNDaNFlxaU5dzYQhKuiTBa8lzr3AImnOVzRq0lOTOC4aLgBkpSgiaVnIOQHBNsczZEd6e7Ufx7G32qut36JkoqSkvOBRNSxi122jK-DcGDVRsfnfqDIlj1CapaHRNUfYIKswgRWQ8nFsQHdg68CsZBY6ByHkynqtb9y_8FogV7EQ</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Wang, Rui-Rui</creator><creator>Niu, Qiang</creator><creator>Tang, Xiao-Bin</creator><creator>Wang, Xiang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190915</creationdate><title>Solving shifted linear systems with restarted GMRES augmented with error approximations</title><author>Wang, Rui-Rui ; Niu, Qiang ; Tang, Xiao-Bin ; Wang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Added linear systems</topic><topic>Error analysis</topic><topic>Iterative methods</topic><topic>Krylov subspace methods</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Multiplication</topic><topic>Restarted GMRES</topic><topic>Restarting</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rui-Rui</creatorcontrib><creatorcontrib>Niu, Qiang</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rui-Rui</au><au>Niu, Qiang</au><au>Tang, Xiao-Bin</au><au>Wang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving shifted linear systems with restarted GMRES augmented with error approximations</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>78</volume><issue>6</issue><spage>1910</spage><epage>1918</epage><pages>1910-1918</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we investigate a variant of the restarted GMRES method for solving a series of large sparse linear systems. Restarting is carried out by augmenting Krylov subspaces with some recently generated error approximations from the seed system. The method can preserve a nice property that allows solving the seed and the added linear systems at the cost of only one matrix–vector multiplication per iteration. Compared with solving each added linear system separately, the advantage of the new scheme is to lower down the overall cost of solving all added linear systems. Numerical experiments illustrate the efficiency of the acceleration strategy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2019.03.037</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2019-09, Vol.78 (6), p.1910-1918
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2294473788
source ScienceDirect Freedom Collection 2022-2024
subjects Acceleration
Added linear systems
Error analysis
Iterative methods
Krylov subspace methods
Linear systems
Mathematical analysis
Matrix algebra
Matrix methods
Multiplication
Restarted GMRES
Restarting
Subspaces
title Solving shifted linear systems with restarted GMRES augmented with error approximations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20shifted%20linear%20systems%20with%20restarted%20GMRES%20augmented%20with%20error%20approximations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Wang,%20Rui-Rui&rft.date=2019-09-15&rft.volume=78&rft.issue=6&rft.spage=1910&rft.epage=1918&rft.pages=1910-1918&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2019.03.037&rft_dat=%3Cproquest_cross%3E2294473788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-62354cf6814a17ca845aa5fe01435b32ff153c730664ce919ea1d8be784010f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294473788&rft_id=info:pmid/&rfr_iscdi=true