Loading…
Nitrogen‐Doped NiO Nanosheet Array for Boosted Electrocatalytic N2 Reduction
Electrocatalytic N2 reduction reaction (NRR) provides a sustainable approach for ambient N2 fixation. Non‐noble transition metal‐based electrocatalysts (TMEs) are emerging as the most promising NRR catalysts, but commonly exhibited limited NRR activity. Heteroatom doping is an effective method to im...
Saved in:
Published in: | ChemCatChem 2019-09, Vol.11 (18), p.4529-4536 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4536 |
container_issue | 18 |
container_start_page | 4529 |
container_title | ChemCatChem |
container_volume | 11 |
creator | Wang, Xiao‐hu Wang, Jing Li, Yu‐biao Chu, Ke |
description | Electrocatalytic N2 reduction reaction (NRR) provides a sustainable approach for ambient N2 fixation. Non‐noble transition metal‐based electrocatalysts (TMEs) are emerging as the most promising NRR catalysts, but commonly exhibited limited NRR activity. Heteroatom doping is an effective method to improve the electrocatalytic activity of TMEs by finely modulating the electronic structures. Herein, as a proof‐of‐concept, nitrogen‐doped NiO nanosheet array on carbon cloth (N‐NiO/CC) was investigated as model heteroatom‐doped TMEs for NRR. The N‐NiO/CC exhibited the considerably enhanced NRR performance with a NH3 yield of 22.7 μg h−1 mg−1 and an FE of 7.3 % in 0.1 M LiClO4 at −0.5 V (vs. RHE), far superior to those of undoped counterpart. Density functional theory (DFT) calculations revealed that the N‐doping could induce the enhanced surface conductivity and upraised d‐band center, leading to promoted *NNH stabilization, reduced reaction energy barrier and thus improved NRR performance.
It's dope! A nitrogen‐doped NiO nanosheet array on carbon cloth (N‐NiO/CC) exhibited enhanced NRR performance with a NH3 yield of 22.7 μg h−1 mg−1 and an FE of 7.3 % in 0.1 M LiClO4 at −0.5 V (vs. RHE), far superior to those of undoped counterparts (NiO/CC). DFT calculations revealed that the N‐doping could induce enhanced surface conductivity and an upraised d‐band center, leading to promoted *NNH stabilization, a reduced reaction energy barrier, and thus improved NRR performance. |
doi_str_mv | 10.1002/cctc.201901075 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2295342080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295342080</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1485-1d9ca27709dfa1ec1313c1e9bf371c3dbd0a024e273c72ca2d152984e20ee0643</originalsourceid><addsrcrecordid>eNo9kEtOwzAQQC0EEqWwZW2JdcrYTup4WUL5SFUqobK2XGcCqUIcHEcoO47AGTkJqYq6mt-bGekRcs1gxgD4rbXBzjgwBQxkckImLJ3LSKRKnR7zFM7JRdftAOZKyGRC8rwK3r1h8_v9c-9aLGherWluGte9Iwa68N4MtHSe3jnXhXG-rNGOK9YEUw-hsjTn9AWL3obKNZfkrDR1h1f_cUpeH5ab7ClarR-fs8UqalmcJhErlDVcSlBFaRhaJpiwDNW2FJJZUWwLMMBj5FJYyUe0YAlX6dgARJjHYkpuDndb7z577ILeud4340vNuUpEzCGFkVIH6quqcdCtrz6MHzQDvRem98L0UZjOsk12rMQfxO1h2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295342080</pqid></control><display><type>article</type><title>Nitrogen‐Doped NiO Nanosheet Array for Boosted Electrocatalytic N2 Reduction</title><source>Wiley</source><creator>Wang, Xiao‐hu ; Wang, Jing ; Li, Yu‐biao ; Chu, Ke</creator><creatorcontrib>Wang, Xiao‐hu ; Wang, Jing ; Li, Yu‐biao ; Chu, Ke</creatorcontrib><description>Electrocatalytic N2 reduction reaction (NRR) provides a sustainable approach for ambient N2 fixation. Non‐noble transition metal‐based electrocatalysts (TMEs) are emerging as the most promising NRR catalysts, but commonly exhibited limited NRR activity. Heteroatom doping is an effective method to improve the electrocatalytic activity of TMEs by finely modulating the electronic structures. Herein, as a proof‐of‐concept, nitrogen‐doped NiO nanosheet array on carbon cloth (N‐NiO/CC) was investigated as model heteroatom‐doped TMEs for NRR. The N‐NiO/CC exhibited the considerably enhanced NRR performance with a NH3 yield of 22.7 μg h−1 mg−1 and an FE of 7.3 % in 0.1 M LiClO4 at −0.5 V (vs. RHE), far superior to those of undoped counterpart. Density functional theory (DFT) calculations revealed that the N‐doping could induce the enhanced surface conductivity and upraised d‐band center, leading to promoted *NNH stabilization, reduced reaction energy barrier and thus improved NRR performance.
It's dope! A nitrogen‐doped NiO nanosheet array on carbon cloth (N‐NiO/CC) exhibited enhanced NRR performance with a NH3 yield of 22.7 μg h−1 mg−1 and an FE of 7.3 % in 0.1 M LiClO4 at −0.5 V (vs. RHE), far superior to those of undoped counterparts (NiO/CC). DFT calculations revealed that the N‐doping could induce enhanced surface conductivity and an upraised d‐band center, leading to promoted *NNH stabilization, a reduced reaction energy barrier, and thus improved NRR performance.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201901075</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Arrays ; Chemical reduction ; Cloth ; Density functional theory ; Doping ; Electrocatalysts ; Electrochemical NH3 synthesis ; N2 reduction reaction ; Nanosheets ; Nickel oxides ; NiO Nanosheet Array ; Nitrogen ; Nitrogen doping ; Nitrogenation ; Transition metals</subject><ispartof>ChemCatChem, 2019-09, Vol.11 (18), p.4529-4536</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0606-2689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Xiao‐hu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Yu‐biao</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><title>Nitrogen‐Doped NiO Nanosheet Array for Boosted Electrocatalytic N2 Reduction</title><title>ChemCatChem</title><description>Electrocatalytic N2 reduction reaction (NRR) provides a sustainable approach for ambient N2 fixation. Non‐noble transition metal‐based electrocatalysts (TMEs) are emerging as the most promising NRR catalysts, but commonly exhibited limited NRR activity. Heteroatom doping is an effective method to improve the electrocatalytic activity of TMEs by finely modulating the electronic structures. Herein, as a proof‐of‐concept, nitrogen‐doped NiO nanosheet array on carbon cloth (N‐NiO/CC) was investigated as model heteroatom‐doped TMEs for NRR. The N‐NiO/CC exhibited the considerably enhanced NRR performance with a NH3 yield of 22.7 μg h−1 mg−1 and an FE of 7.3 % in 0.1 M LiClO4 at −0.5 V (vs. RHE), far superior to those of undoped counterpart. Density functional theory (DFT) calculations revealed that the N‐doping could induce the enhanced surface conductivity and upraised d‐band center, leading to promoted *NNH stabilization, reduced reaction energy barrier and thus improved NRR performance.
It's dope! A nitrogen‐doped NiO nanosheet array on carbon cloth (N‐NiO/CC) exhibited enhanced NRR performance with a NH3 yield of 22.7 μg h−1 mg−1 and an FE of 7.3 % in 0.1 M LiClO4 at −0.5 V (vs. RHE), far superior to those of undoped counterparts (NiO/CC). DFT calculations revealed that the N‐doping could induce enhanced surface conductivity and an upraised d‐band center, leading to promoted *NNH stabilization, a reduced reaction energy barrier, and thus improved NRR performance.</description><subject>Ammonia</subject><subject>Arrays</subject><subject>Chemical reduction</subject><subject>Cloth</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electrocatalysts</subject><subject>Electrochemical NH3 synthesis</subject><subject>N2 reduction reaction</subject><subject>Nanosheets</subject><subject>Nickel oxides</subject><subject>NiO Nanosheet Array</subject><subject>Nitrogen</subject><subject>Nitrogen doping</subject><subject>Nitrogenation</subject><subject>Transition metals</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEtOwzAQQC0EEqWwZW2JdcrYTup4WUL5SFUqobK2XGcCqUIcHEcoO47AGTkJqYq6mt-bGekRcs1gxgD4rbXBzjgwBQxkckImLJ3LSKRKnR7zFM7JRdftAOZKyGRC8rwK3r1h8_v9c-9aLGherWluGte9Iwa68N4MtHSe3jnXhXG-rNGOK9YEUw-hsjTn9AWL3obKNZfkrDR1h1f_cUpeH5ab7ClarR-fs8UqalmcJhErlDVcSlBFaRhaJpiwDNW2FJJZUWwLMMBj5FJYyUe0YAlX6dgARJjHYkpuDndb7z577ILeud4340vNuUpEzCGFkVIH6quqcdCtrz6MHzQDvRem98L0UZjOsk12rMQfxO1h2w</recordid><startdate>20190919</startdate><enddate>20190919</enddate><creator>Wang, Xiao‐hu</creator><creator>Wang, Jing</creator><creator>Li, Yu‐biao</creator><creator>Chu, Ke</creator><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0000-0002-0606-2689</orcidid></search><sort><creationdate>20190919</creationdate><title>Nitrogen‐Doped NiO Nanosheet Array for Boosted Electrocatalytic N2 Reduction</title><author>Wang, Xiao‐hu ; Wang, Jing ; Li, Yu‐biao ; Chu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1485-1d9ca27709dfa1ec1313c1e9bf371c3dbd0a024e273c72ca2d152984e20ee0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Arrays</topic><topic>Chemical reduction</topic><topic>Cloth</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electrocatalysts</topic><topic>Electrochemical NH3 synthesis</topic><topic>N2 reduction reaction</topic><topic>Nanosheets</topic><topic>Nickel oxides</topic><topic>NiO Nanosheet Array</topic><topic>Nitrogen</topic><topic>Nitrogen doping</topic><topic>Nitrogenation</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiao‐hu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Yu‐biao</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiao‐hu</au><au>Wang, Jing</au><au>Li, Yu‐biao</au><au>Chu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen‐Doped NiO Nanosheet Array for Boosted Electrocatalytic N2 Reduction</atitle><jtitle>ChemCatChem</jtitle><date>2019-09-19</date><risdate>2019</risdate><volume>11</volume><issue>18</issue><spage>4529</spage><epage>4536</epage><pages>4529-4536</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Electrocatalytic N2 reduction reaction (NRR) provides a sustainable approach for ambient N2 fixation. Non‐noble transition metal‐based electrocatalysts (TMEs) are emerging as the most promising NRR catalysts, but commonly exhibited limited NRR activity. Heteroatom doping is an effective method to improve the electrocatalytic activity of TMEs by finely modulating the electronic structures. Herein, as a proof‐of‐concept, nitrogen‐doped NiO nanosheet array on carbon cloth (N‐NiO/CC) was investigated as model heteroatom‐doped TMEs for NRR. The N‐NiO/CC exhibited the considerably enhanced NRR performance with a NH3 yield of 22.7 μg h−1 mg−1 and an FE of 7.3 % in 0.1 M LiClO4 at −0.5 V (vs. RHE), far superior to those of undoped counterpart. Density functional theory (DFT) calculations revealed that the N‐doping could induce the enhanced surface conductivity and upraised d‐band center, leading to promoted *NNH stabilization, reduced reaction energy barrier and thus improved NRR performance.
It's dope! A nitrogen‐doped NiO nanosheet array on carbon cloth (N‐NiO/CC) exhibited enhanced NRR performance with a NH3 yield of 22.7 μg h−1 mg−1 and an FE of 7.3 % in 0.1 M LiClO4 at −0.5 V (vs. RHE), far superior to those of undoped counterparts (NiO/CC). DFT calculations revealed that the N‐doping could induce enhanced surface conductivity and an upraised d‐band center, leading to promoted *NNH stabilization, a reduced reaction energy barrier, and thus improved NRR performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201901075</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0606-2689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2019-09, Vol.11 (18), p.4529-4536 |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_2295342080 |
source | Wiley |
subjects | Ammonia Arrays Chemical reduction Cloth Density functional theory Doping Electrocatalysts Electrochemical NH3 synthesis N2 reduction reaction Nanosheets Nickel oxides NiO Nanosheet Array Nitrogen Nitrogen doping Nitrogenation Transition metals |
title | Nitrogen‐Doped NiO Nanosheet Array for Boosted Electrocatalytic N2 Reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%E2%80%90Doped%20NiO%20Nanosheet%20Array%20for%20Boosted%20Electrocatalytic%20N2%20Reduction&rft.jtitle=ChemCatChem&rft.au=Wang,%20Xiao%E2%80%90hu&rft.date=2019-09-19&rft.volume=11&rft.issue=18&rft.spage=4529&rft.epage=4536&rft.pages=4529-4536&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201901075&rft_dat=%3Cproquest_wiley%3E2295342080%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1485-1d9ca27709dfa1ec1313c1e9bf371c3dbd0a024e273c72ca2d152984e20ee0643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2295342080&rft_id=info:pmid/&rfr_iscdi=true |