Loading…
Sulfur and Carbon Co‐doped TiO2 Composite Fabricated by Lignosulphonate and Its Suitability for Removal of Cadmium
Highly toxic divalent cadmium causes serious environmental issues. To quickly monitor and/or efficiently remove this potentially toxic metal ion as well as to explore its interfacial chemistry with metal oxides, a sulfur and carbon co‐doped titania (S/C‐TiO2) composite is synthesized via a facile so...
Saved in:
Published in: | Clean : soil, air, water air, water, 2019-09, Vol.47 (9), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Highly toxic divalent cadmium causes serious environmental issues. To quickly monitor and/or efficiently remove this potentially toxic metal ion as well as to explore its interfacial chemistry with metal oxides, a sulfur and carbon co‐doped titania (S/C‐TiO2) composite is synthesized via a facile sol‐gel method with the assistance of sodium lignosulphonate (SLS). The prepared composite displays a well‐crystallized TiO2 nanostructure comprising the anatase phase. Both S and C, which are derived from the SLS template, are found to enter the TiO2 lattice. The S/C‐TiO2 composite exhibits a porous structure with a wide pore size distribution. The newly synthesized composite shows adsorption capability for the potentially toxic metal Cd(II). The adsorption process requires |
---|---|
ISSN: | 1863-0650 1863-0669 |
DOI: | 10.1002/clen.201800446 |