Loading…

Chemoreflex and metaboreflex control during static hypoxic exercise

To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 ± 2 yr) during 3 min of three randomized interventions: isocapnic...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Heart and circulatory physiology 2005-04, Vol.57 (4), p.H1724-H1729
Main Authors: HOUSSIERE, Anne, NAJEM, Boutaina, CIARKA, Agniezka, VELEZ-ROA, Sonia, NAEIJE, Robert, VAN DE BORNE, Philippe
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 ± 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O2) (chemoreflex activation), isometric handgrip exercise in normoxia (metaboreflex activation), and isometric handgrip exercise during isocapnic hypoxia (concomitant metaboreflex and chemoreflex activation). Each intervention was followed by a forearm circulatory arrest to allow persistent metaboreflex activation in the absence of exercise and chemoreflex activation. Handgrip increased blood pressure, MSNA, heart rate, ventilation, and lactate (all P < 0.001). Hypoxia without handgrip increased MSNA, heart rate, and ventilation (all P < 0.001), but it did not change blood pressure and lactate. Handgrip enhanced blood pressure, heart rate, MSNA, and ventilation responses to hypoxia (all P < 0.05). During circulatory arrest after handgrip in hypoxia, heart rate returned promptly to baseline values, whereas ventilation decreased but remained elevated (P < 0.05). In contrast, MSNA, blood pressure, and lactate returned to baseline values during circulatory arrest after hypoxia without exercise but remained markedly increased after handgrip in hypoxia (P < 0.05). We conclude that metaboreceptors and chemoreceptors exert differential effects on the cardiorespiratory and sympathetic responses during exercise in hypoxia. [PUBLICATION ABSTRACT]
ISSN:0363-6135
1522-1539