Loading…
Deep Metric Learning using Similarities from Nonlinear Rank Approximations
In recent years, deep metric learning has achieved promising results in learning high dimensional semantic feature embeddings where the spatial relationships of the feature vectors match the visual similarities of the images. Similarity search for images is performed by determining the vectors with...
Saved in:
Published in: | arXiv.org 2019-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Schall, Konstantin Barthel, Kai Uwe Hezel, Nico Jung, Klaus |
description | In recent years, deep metric learning has achieved promising results in learning high dimensional semantic feature embeddings where the spatial relationships of the feature vectors match the visual similarities of the images. Similarity search for images is performed by determining the vectors with the smallest distances to a query vector. However, high retrieval quality does not depend on the actual distances of the feature vectors, but rather on the ranking order of the feature vectors from similar images. In this paper, we introduce a metric learning algorithm that focuses on identifying and modifying those feature vectors that most strongly affect the retrieval quality. We compute normalized approximated ranks and convert them to similarities by applying a nonlinear transfer function. These similarities are used in a newly proposed loss function that better contracts similar and disperses dissimilar samples. Experiments demonstrate significant improvement over existing deep feature embedding methods on the CUB-200-2011, Cars196, and Stanford Online Products data sets for all embedding sizes. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2295838439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295838439</sourcerecordid><originalsourceid>FETCH-proquest_journals_22958384393</originalsourceid><addsrcrecordid>eNqNys0KgkAUhuEhCJLyHgZaC3ZGS5fRDxHVwtrLEMc4pjM2Z4QuP4MuoM33Lr5nJAJQahFlCcBEhMx1HMewXEGaqkAct4idPKN3dJcn1M6Qeciev3ullhrtyBOyrJxt5cWahsygZKHNU667ztk3tdqTNTwT40o3jOGvUzHf726bQzSgV4_sy9r2zgxXCZCnmcoSlav_1Afccj0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295838439</pqid></control><display><type>article</type><title>Deep Metric Learning using Similarities from Nonlinear Rank Approximations</title><source>Publicly Available Content Database</source><creator>Schall, Konstantin ; Barthel, Kai Uwe ; Hezel, Nico ; Jung, Klaus</creator><creatorcontrib>Schall, Konstantin ; Barthel, Kai Uwe ; Hezel, Nico ; Jung, Klaus</creatorcontrib><description>In recent years, deep metric learning has achieved promising results in learning high dimensional semantic feature embeddings where the spatial relationships of the feature vectors match the visual similarities of the images. Similarity search for images is performed by determining the vectors with the smallest distances to a query vector. However, high retrieval quality does not depend on the actual distances of the feature vectors, but rather on the ranking order of the feature vectors from similar images. In this paper, we introduce a metric learning algorithm that focuses on identifying and modifying those feature vectors that most strongly affect the retrieval quality. We compute normalized approximated ranks and convert them to similarities by applying a nonlinear transfer function. These similarities are used in a newly proposed loss function that better contracts similar and disperses dissimilar samples. Experiments demonstrate significant improvement over existing deep feature embedding methods on the CUB-200-2011, Cars196, and Stanford Online Products data sets for all embedding sizes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Analogies ; Embedding ; Machine learning ; Retrieval ; Transfer functions</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2295838439?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Schall, Konstantin</creatorcontrib><creatorcontrib>Barthel, Kai Uwe</creatorcontrib><creatorcontrib>Hezel, Nico</creatorcontrib><creatorcontrib>Jung, Klaus</creatorcontrib><title>Deep Metric Learning using Similarities from Nonlinear Rank Approximations</title><title>arXiv.org</title><description>In recent years, deep metric learning has achieved promising results in learning high dimensional semantic feature embeddings where the spatial relationships of the feature vectors match the visual similarities of the images. Similarity search for images is performed by determining the vectors with the smallest distances to a query vector. However, high retrieval quality does not depend on the actual distances of the feature vectors, but rather on the ranking order of the feature vectors from similar images. In this paper, we introduce a metric learning algorithm that focuses on identifying and modifying those feature vectors that most strongly affect the retrieval quality. We compute normalized approximated ranks and convert them to similarities by applying a nonlinear transfer function. These similarities are used in a newly proposed loss function that better contracts similar and disperses dissimilar samples. Experiments demonstrate significant improvement over existing deep feature embedding methods on the CUB-200-2011, Cars196, and Stanford Online Products data sets for all embedding sizes.</description><subject>Algorithms</subject><subject>Analogies</subject><subject>Embedding</subject><subject>Machine learning</subject><subject>Retrieval</subject><subject>Transfer functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNys0KgkAUhuEhCJLyHgZaC3ZGS5fRDxHVwtrLEMc4pjM2Z4QuP4MuoM33Lr5nJAJQahFlCcBEhMx1HMewXEGaqkAct4idPKN3dJcn1M6Qeciev3ullhrtyBOyrJxt5cWahsygZKHNU667ztk3tdqTNTwT40o3jOGvUzHf726bQzSgV4_sy9r2zgxXCZCnmcoSlav_1Afccj0k</recordid><startdate>20190924</startdate><enddate>20190924</enddate><creator>Schall, Konstantin</creator><creator>Barthel, Kai Uwe</creator><creator>Hezel, Nico</creator><creator>Jung, Klaus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190924</creationdate><title>Deep Metric Learning using Similarities from Nonlinear Rank Approximations</title><author>Schall, Konstantin ; Barthel, Kai Uwe ; Hezel, Nico ; Jung, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22958384393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analogies</topic><topic>Embedding</topic><topic>Machine learning</topic><topic>Retrieval</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Schall, Konstantin</creatorcontrib><creatorcontrib>Barthel, Kai Uwe</creatorcontrib><creatorcontrib>Hezel, Nico</creatorcontrib><creatorcontrib>Jung, Klaus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schall, Konstantin</au><au>Barthel, Kai Uwe</au><au>Hezel, Nico</au><au>Jung, Klaus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Metric Learning using Similarities from Nonlinear Rank Approximations</atitle><jtitle>arXiv.org</jtitle><date>2019-09-24</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In recent years, deep metric learning has achieved promising results in learning high dimensional semantic feature embeddings where the spatial relationships of the feature vectors match the visual similarities of the images. Similarity search for images is performed by determining the vectors with the smallest distances to a query vector. However, high retrieval quality does not depend on the actual distances of the feature vectors, but rather on the ranking order of the feature vectors from similar images. In this paper, we introduce a metric learning algorithm that focuses on identifying and modifying those feature vectors that most strongly affect the retrieval quality. We compute normalized approximated ranks and convert them to similarities by applying a nonlinear transfer function. These similarities are used in a newly proposed loss function that better contracts similar and disperses dissimilar samples. Experiments demonstrate significant improvement over existing deep feature embedding methods on the CUB-200-2011, Cars196, and Stanford Online Products data sets for all embedding sizes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2295838439 |
source | Publicly Available Content Database |
subjects | Algorithms Analogies Embedding Machine learning Retrieval Transfer functions |
title | Deep Metric Learning using Similarities from Nonlinear Rank Approximations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Metric%20Learning%20using%20Similarities%20from%20Nonlinear%20Rank%20Approximations&rft.jtitle=arXiv.org&rft.au=Schall,%20Konstantin&rft.date=2019-09-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2295838439%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22958384393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2295838439&rft_id=info:pmid/&rfr_iscdi=true |