Loading…

Guiding Autonomous Exploration With Signal Temporal Logic

Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a met...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2019-10, Vol.4 (4), p.3332-3339
Main Authors: Barbosa, Fernando S., Duberg, Daniel, Jensfelt, Patric, Tumova, Jana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3
cites cdi_FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3
container_end_page 3339
container_issue 4
container_start_page 3332
container_title IEEE robotics and automation letters
container_volume 4
creator Barbosa, Fernando S.
Duberg, Daniel
Jensfelt, Patric
Tumova, Jana
description Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.
doi_str_mv 10.1109/LRA.2019.2926669
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2296105708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8754788</ieee_id><sourcerecordid>2296105708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNTeBS8Bz6n7kf06hlqrEBC06nHZpJt0a5qNuwnqf29KSvE0w_B7b2YeANcIzhGC8i57SecYIjnHEjPG5BmYYMJ5TDhj5__6SzALYQchRBRzIukEyFVvN7aporTvXOP2rg_R8qetndeddU30Ybtt9GqrRtfR2uzbYV5HmatscQUuSl0HMzvWKXh7WK4Xj3H2vHpapFlcECy7WGhWEJPTnAtOErlJNIeU04TkCUkQ0QXXlGhdIgHzBCWQIgwNoazQAslSl2QK4tE3fJu2z1Xr7V77X-W0Vff2PVXOV-qz2ypMKcdo4G9HvvXuqzehUzvX--H-oDCWDA3boRgoOFKFdyF4U558EVSHTNWQqTpkqo6ZDpKbUWKNMSdcDL9wIcgfnpBwpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296105708</pqid></control><display><type>article</type><title>Guiding Autonomous Exploration With Signal Temporal Logic</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Barbosa, Fernando S. ; Duberg, Daniel ; Jensfelt, Patric ; Tumova, Jana</creator><creatorcontrib>Barbosa, Fernando S. ; Duberg, Daniel ; Jensfelt, Patric ; Tumova, Jana</creatorcontrib><description>Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2926669</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer simulation ; Exploration ; formal methods in robotics and automation ; Mapping ; motion and path planning ; Motion planning ; Planning ; Robots ; Robustness ; Safety ; search and rescue robots ; Semantics ; Temporal logic ; Three-dimensional displays ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3332-3339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3</citedby><cites>FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3</cites><orcidid>0000-0001-8627-1191 ; 0000-0002-1170-7162 ; 0000-0003-4815-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8754788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255721$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, Fernando S.</creatorcontrib><creatorcontrib>Duberg, Daniel</creatorcontrib><creatorcontrib>Jensfelt, Patric</creatorcontrib><creatorcontrib>Tumova, Jana</creatorcontrib><title>Guiding Autonomous Exploration With Signal Temporal Logic</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Exploration</subject><subject>formal methods in robotics and automation</subject><subject>Mapping</subject><subject>motion and path planning</subject><subject>Motion planning</subject><subject>Planning</subject><subject>Robots</subject><subject>Robustness</subject><subject>Safety</subject><subject>search and rescue robots</subject><subject>Semantics</subject><subject>Temporal logic</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Lw0AQxRdRsNTeBS8Bz6n7kf06hlqrEBC06nHZpJt0a5qNuwnqf29KSvE0w_B7b2YeANcIzhGC8i57SecYIjnHEjPG5BmYYMJ5TDhj5__6SzALYQchRBRzIukEyFVvN7aporTvXOP2rg_R8qetndeddU30Ybtt9GqrRtfR2uzbYV5HmatscQUuSl0HMzvWKXh7WK4Xj3H2vHpapFlcECy7WGhWEJPTnAtOErlJNIeU04TkCUkQ0QXXlGhdIgHzBCWQIgwNoazQAslSl2QK4tE3fJu2z1Xr7V77X-W0Vff2PVXOV-qz2ypMKcdo4G9HvvXuqzehUzvX--H-oDCWDA3boRgoOFKFdyF4U558EVSHTNWQqTpkqo6ZDpKbUWKNMSdcDL9wIcgfnpBwpA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Barbosa, Fernando S.</creator><creator>Duberg, Daniel</creator><creator>Jensfelt, Patric</creator><creator>Tumova, Jana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0001-8627-1191</orcidid><orcidid>https://orcid.org/0000-0002-1170-7162</orcidid><orcidid>https://orcid.org/0000-0003-4815-9689</orcidid></search><sort><creationdate>20191001</creationdate><title>Guiding Autonomous Exploration With Signal Temporal Logic</title><author>Barbosa, Fernando S. ; Duberg, Daniel ; Jensfelt, Patric ; Tumova, Jana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Exploration</topic><topic>formal methods in robotics and automation</topic><topic>Mapping</topic><topic>motion and path planning</topic><topic>Motion planning</topic><topic>Planning</topic><topic>Robots</topic><topic>Robustness</topic><topic>Safety</topic><topic>search and rescue robots</topic><topic>Semantics</topic><topic>Temporal logic</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Fernando S.</creatorcontrib><creatorcontrib>Duberg, Daniel</creatorcontrib><creatorcontrib>Jensfelt, Patric</creatorcontrib><creatorcontrib>Tumova, Jana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Fernando S.</au><au>Duberg, Daniel</au><au>Jensfelt, Patric</au><au>Tumova, Jana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding Autonomous Exploration With Signal Temporal Logic</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>3332</spage><epage>3339</epage><pages>3332-3339</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2926669</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8627-1191</orcidid><orcidid>https://orcid.org/0000-0002-1170-7162</orcidid><orcidid>https://orcid.org/0000-0003-4815-9689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3332-3339
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2296105708
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Computer simulation
Exploration
formal methods in robotics and automation
Mapping
motion and path planning
Motion planning
Planning
Robots
Robustness
Safety
search and rescue robots
Semantics
Temporal logic
Three-dimensional displays
Trajectory
title Guiding Autonomous Exploration With Signal Temporal Logic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%20Autonomous%20Exploration%20With%20Signal%20Temporal%20Logic&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Barbosa,%20Fernando%20S.&rft.date=2019-10-01&rft.volume=4&rft.issue=4&rft.spage=3332&rft.epage=3339&rft.pages=3332-3339&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2926669&rft_dat=%3Cproquest_swepu%3E2296105708%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296105708&rft_id=info:pmid/&rft_ieee_id=8754788&rfr_iscdi=true