Loading…
Guiding Autonomous Exploration With Signal Temporal Logic
Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a met...
Saved in:
Published in: | IEEE robotics and automation letters 2019-10, Vol.4 (4), p.3332-3339 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3 |
container_end_page | 3339 |
container_issue | 4 |
container_start_page | 3332 |
container_title | IEEE robotics and automation letters |
container_volume | 4 |
creator | Barbosa, Fernando S. Duberg, Daniel Jensfelt, Patric Tumova, Jana |
description | Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach. |
doi_str_mv | 10.1109/LRA.2019.2926669 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2296105708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8754788</ieee_id><sourcerecordid>2296105708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNTeBS8Bz6n7kf06hlqrEBC06nHZpJt0a5qNuwnqf29KSvE0w_B7b2YeANcIzhGC8i57SecYIjnHEjPG5BmYYMJ5TDhj5__6SzALYQchRBRzIukEyFVvN7aporTvXOP2rg_R8qetndeddU30Ybtt9GqrRtfR2uzbYV5HmatscQUuSl0HMzvWKXh7WK4Xj3H2vHpapFlcECy7WGhWEJPTnAtOErlJNIeU04TkCUkQ0QXXlGhdIgHzBCWQIgwNoazQAslSl2QK4tE3fJu2z1Xr7V77X-W0Vff2PVXOV-qz2ypMKcdo4G9HvvXuqzehUzvX--H-oDCWDA3boRgoOFKFdyF4U558EVSHTNWQqTpkqo6ZDpKbUWKNMSdcDL9wIcgfnpBwpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296105708</pqid></control><display><type>article</type><title>Guiding Autonomous Exploration With Signal Temporal Logic</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Barbosa, Fernando S. ; Duberg, Daniel ; Jensfelt, Patric ; Tumova, Jana</creator><creatorcontrib>Barbosa, Fernando S. ; Duberg, Daniel ; Jensfelt, Patric ; Tumova, Jana</creatorcontrib><description>Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2926669</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer simulation ; Exploration ; formal methods in robotics and automation ; Mapping ; motion and path planning ; Motion planning ; Planning ; Robots ; Robustness ; Safety ; search and rescue robots ; Semantics ; Temporal logic ; Three-dimensional displays ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3332-3339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3</citedby><cites>FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3</cites><orcidid>0000-0001-8627-1191 ; 0000-0002-1170-7162 ; 0000-0003-4815-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8754788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255721$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, Fernando S.</creatorcontrib><creatorcontrib>Duberg, Daniel</creatorcontrib><creatorcontrib>Jensfelt, Patric</creatorcontrib><creatorcontrib>Tumova, Jana</creatorcontrib><title>Guiding Autonomous Exploration With Signal Temporal Logic</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Exploration</subject><subject>formal methods in robotics and automation</subject><subject>Mapping</subject><subject>motion and path planning</subject><subject>Motion planning</subject><subject>Planning</subject><subject>Robots</subject><subject>Robustness</subject><subject>Safety</subject><subject>search and rescue robots</subject><subject>Semantics</subject><subject>Temporal logic</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Lw0AQxRdRsNTeBS8Bz6n7kf06hlqrEBC06nHZpJt0a5qNuwnqf29KSvE0w_B7b2YeANcIzhGC8i57SecYIjnHEjPG5BmYYMJ5TDhj5__6SzALYQchRBRzIukEyFVvN7aporTvXOP2rg_R8qetndeddU30Ybtt9GqrRtfR2uzbYV5HmatscQUuSl0HMzvWKXh7WK4Xj3H2vHpapFlcECy7WGhWEJPTnAtOErlJNIeU04TkCUkQ0QXXlGhdIgHzBCWQIgwNoazQAslSl2QK4tE3fJu2z1Xr7V77X-W0Vff2PVXOV-qz2ypMKcdo4G9HvvXuqzehUzvX--H-oDCWDA3boRgoOFKFdyF4U558EVSHTNWQqTpkqo6ZDpKbUWKNMSdcDL9wIcgfnpBwpA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Barbosa, Fernando S.</creator><creator>Duberg, Daniel</creator><creator>Jensfelt, Patric</creator><creator>Tumova, Jana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0001-8627-1191</orcidid><orcidid>https://orcid.org/0000-0002-1170-7162</orcidid><orcidid>https://orcid.org/0000-0003-4815-9689</orcidid></search><sort><creationdate>20191001</creationdate><title>Guiding Autonomous Exploration With Signal Temporal Logic</title><author>Barbosa, Fernando S. ; Duberg, Daniel ; Jensfelt, Patric ; Tumova, Jana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Exploration</topic><topic>formal methods in robotics and automation</topic><topic>Mapping</topic><topic>motion and path planning</topic><topic>Motion planning</topic><topic>Planning</topic><topic>Robots</topic><topic>Robustness</topic><topic>Safety</topic><topic>search and rescue robots</topic><topic>Semantics</topic><topic>Temporal logic</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Fernando S.</creatorcontrib><creatorcontrib>Duberg, Daniel</creatorcontrib><creatorcontrib>Jensfelt, Patric</creatorcontrib><creatorcontrib>Tumova, Jana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Fernando S.</au><au>Duberg, Daniel</au><au>Jensfelt, Patric</au><au>Tumova, Jana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding Autonomous Exploration With Signal Temporal Logic</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>3332</spage><epage>3339</epage><pages>3332-3339</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2926669</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8627-1191</orcidid><orcidid>https://orcid.org/0000-0002-1170-7162</orcidid><orcidid>https://orcid.org/0000-0003-4815-9689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3332-3339 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2296105708 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Computer simulation Exploration formal methods in robotics and automation Mapping motion and path planning Motion planning Planning Robots Robustness Safety search and rescue robots Semantics Temporal logic Three-dimensional displays Trajectory |
title | Guiding Autonomous Exploration With Signal Temporal Logic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%20Autonomous%20Exploration%20With%20Signal%20Temporal%20Logic&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Barbosa,%20Fernando%20S.&rft.date=2019-10-01&rft.volume=4&rft.issue=4&rft.spage=3332&rft.epage=3339&rft.pages=3332-3339&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2926669&rft_dat=%3Cproquest_swepu%3E2296105708%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-8a6c3eb5b787349d4a7057543b43413ac7a53aaf180b41405120e356ca819faf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296105708&rft_id=info:pmid/&rft_ieee_id=8754788&rfr_iscdi=true |