Loading…

Handwriting Trajectory Reconstruction Using Low-Cost IMU

In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computational intelligence 2019-06, Vol.3 (3), p.261-270
Main Authors: Pan, Tse-Yu, Kuo, Chih-Hsuan, Liu, Hou-Tim, Hu, Min-Chun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13
cites cdi_FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13
container_end_page 270
container_issue 3
container_start_page 261
container_title IEEE transactions on emerging topics in computational intelligence
container_volume 3
creator Pan, Tse-Yu
Kuo, Chih-Hsuan
Liu, Hou-Tim
Hu, Min-Chun
description In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since intrinsic bias and random noise usually cause unreliable IMU signals, filtering methods are utilized to reduce high- or low-frequency noises of the signals. In addition, to more accurately detect whether the smartphone is moving or not, we extract multiple features from IMU signals and train a movement detection model based on linear discriminant analysis (LDA). Then, a "reset switch" mechanism is applied when the smartphone is detected as in a static state. The "reset switch" mechanism can effectively restrain the accumulated error of displacement calculation. Finally, the trajectory reconstruction results are applied to handwritten letter recognition for English alphabet, and the experimental results show that our proposed trajectory reconstruction method is reliable.
doi_str_mv 10.1109/TETCI.2018.2803777
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2296108824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8310024</ieee_id><sourcerecordid>2296108824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gF4WPG-dJJt_RylqCxVBWvAW0mxWtuimJiml395st4inGWbem3n8ELrFMMUY1MPqaTVbTAlgOSUSqBDiAo1IJXBJJPu4_Ndfo0mMWwAgimHKqhGSc9PVh9CmtvssVsFsnU0-HIt3Z30XU9jb1PquWMd-v_SHcuZjKhav6xt01Ziv6CbnOkbr55xjXi7fXhazx2Vp849UStFYhTlXNdScGE6JMbRhAkSdozohzYZyRSsmsKgpCFUznEcgGFfGbjAdo_vh7i74n72LSW_9PnT5pSZEcQxSkiqryKCywccYXKN3of024agx6B6SPkHSPSR9hpRNd4Opdc79GSTFmU9FfwFXLGEd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296108824</pqid></control><display><type>article</type><title>Handwriting Trajectory Reconstruction Using Low-Cost IMU</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pan, Tse-Yu ; Kuo, Chih-Hsuan ; Liu, Hou-Tim ; Hu, Min-Chun</creator><creatorcontrib>Pan, Tse-Yu ; Kuo, Chih-Hsuan ; Liu, Hou-Tim ; Hu, Min-Chun</creatorcontrib><description>In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since intrinsic bias and random noise usually cause unreliable IMU signals, filtering methods are utilized to reduce high- or low-frequency noises of the signals. In addition, to more accurately detect whether the smartphone is moving or not, we extract multiple features from IMU signals and train a movement detection model based on linear discriminant analysis (LDA). Then, a "reset switch" mechanism is applied when the smartphone is detected as in a static state. The "reset switch" mechanism can effectively restrain the accumulated error of displacement calculation. Finally, the trajectory reconstruction results are applied to handwritten letter recognition for English alphabet, and the experimental results show that our proposed trajectory reconstruction method is reliable.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2018.2803777</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Accelerometers ; complementary filter ; convolutional neural network ; Discriminant analysis ; Feature extraction ; Handwriting recognition ; handwritten letter recognition ; Image reconstruction ; Inertial measurement unit ; Inertial platforms ; inertial sensor ; linear discriminant analysis ; Low cost ; Motion perception ; Random noise ; Reconstruction ; Reconstruction algorithms ; Sensitivity ; Smart phones ; Smartphones ; Three axis ; Trajectories ; Trajectory ; trajectory reconstruction</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2019-06, Vol.3 (3), p.261-270</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13</citedby><cites>FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13</cites><orcidid>0000-0001-8570-1575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8310024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Pan, Tse-Yu</creatorcontrib><creatorcontrib>Kuo, Chih-Hsuan</creatorcontrib><creatorcontrib>Liu, Hou-Tim</creatorcontrib><creatorcontrib>Hu, Min-Chun</creatorcontrib><title>Handwriting Trajectory Reconstruction Using Low-Cost IMU</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since intrinsic bias and random noise usually cause unreliable IMU signals, filtering methods are utilized to reduce high- or low-frequency noises of the signals. In addition, to more accurately detect whether the smartphone is moving or not, we extract multiple features from IMU signals and train a movement detection model based on linear discriminant analysis (LDA). Then, a "reset switch" mechanism is applied when the smartphone is detected as in a static state. The "reset switch" mechanism can effectively restrain the accumulated error of displacement calculation. Finally, the trajectory reconstruction results are applied to handwritten letter recognition for English alphabet, and the experimental results show that our proposed trajectory reconstruction method is reliable.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>complementary filter</subject><subject>convolutional neural network</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Handwriting recognition</subject><subject>handwritten letter recognition</subject><subject>Image reconstruction</subject><subject>Inertial measurement unit</subject><subject>Inertial platforms</subject><subject>inertial sensor</subject><subject>linear discriminant analysis</subject><subject>Low cost</subject><subject>Motion perception</subject><subject>Random noise</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Sensitivity</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>Three axis</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>trajectory reconstruction</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWGq_gF4WPG-dJJt_RylqCxVBWvAW0mxWtuimJiml395st4inGWbem3n8ELrFMMUY1MPqaTVbTAlgOSUSqBDiAo1IJXBJJPu4_Ndfo0mMWwAgimHKqhGSc9PVh9CmtvssVsFsnU0-HIt3Z30XU9jb1PquWMd-v_SHcuZjKhav6xt01Ziv6CbnOkbr55xjXi7fXhazx2Vp849UStFYhTlXNdScGE6JMbRhAkSdozohzYZyRSsmsKgpCFUznEcgGFfGbjAdo_vh7i74n72LSW_9PnT5pSZEcQxSkiqryKCywccYXKN3of024agx6B6SPkHSPSR9hpRNd4Opdc79GSTFmU9FfwFXLGEd</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Pan, Tse-Yu</creator><creator>Kuo, Chih-Hsuan</creator><creator>Liu, Hou-Tim</creator><creator>Hu, Min-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8570-1575</orcidid></search><sort><creationdate>20190601</creationdate><title>Handwriting Trajectory Reconstruction Using Low-Cost IMU</title><author>Pan, Tse-Yu ; Kuo, Chih-Hsuan ; Liu, Hou-Tim ; Hu, Min-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>complementary filter</topic><topic>convolutional neural network</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Handwriting recognition</topic><topic>handwritten letter recognition</topic><topic>Image reconstruction</topic><topic>Inertial measurement unit</topic><topic>Inertial platforms</topic><topic>inertial sensor</topic><topic>linear discriminant analysis</topic><topic>Low cost</topic><topic>Motion perception</topic><topic>Random noise</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Sensitivity</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>Three axis</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>trajectory reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Tse-Yu</creatorcontrib><creatorcontrib>Kuo, Chih-Hsuan</creatorcontrib><creatorcontrib>Liu, Hou-Tim</creatorcontrib><creatorcontrib>Hu, Min-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Tse-Yu</au><au>Kuo, Chih-Hsuan</au><au>Liu, Hou-Tim</au><au>Hu, Min-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handwriting Trajectory Reconstruction Using Low-Cost IMU</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>3</volume><issue>3</issue><spage>261</spage><epage>270</epage><pages>261-270</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since intrinsic bias and random noise usually cause unreliable IMU signals, filtering methods are utilized to reduce high- or low-frequency noises of the signals. In addition, to more accurately detect whether the smartphone is moving or not, we extract multiple features from IMU signals and train a movement detection model based on linear discriminant analysis (LDA). Then, a "reset switch" mechanism is applied when the smartphone is detected as in a static state. The "reset switch" mechanism can effectively restrain the accumulated error of displacement calculation. Finally, the trajectory reconstruction results are applied to handwritten letter recognition for English alphabet, and the experimental results show that our proposed trajectory reconstruction method is reliable.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2018.2803777</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8570-1575</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2471-285X
ispartof IEEE transactions on emerging topics in computational intelligence, 2019-06, Vol.3 (3), p.261-270
issn 2471-285X
2471-285X
language eng
recordid cdi_proquest_journals_2296108824
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
Accelerometers
complementary filter
convolutional neural network
Discriminant analysis
Feature extraction
Handwriting recognition
handwritten letter recognition
Image reconstruction
Inertial measurement unit
Inertial platforms
inertial sensor
linear discriminant analysis
Low cost
Motion perception
Random noise
Reconstruction
Reconstruction algorithms
Sensitivity
Smart phones
Smartphones
Three axis
Trajectories
Trajectory
trajectory reconstruction
title Handwriting Trajectory Reconstruction Using Low-Cost IMU
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handwriting%20Trajectory%20Reconstruction%20Using%20Low-Cost%20IMU&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Pan,%20Tse-Yu&rft.date=2019-06-01&rft.volume=3&rft.issue=3&rft.spage=261&rft.epage=270&rft.pages=261-270&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2018.2803777&rft_dat=%3Cproquest_ieee_%3E2296108824%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296108824&rft_id=info:pmid/&rft_ieee_id=8310024&rfr_iscdi=true