Loading…
Handwriting Trajectory Reconstruction Using Low-Cost IMU
In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since in...
Saved in:
Published in: | IEEE transactions on emerging topics in computational intelligence 2019-06, Vol.3 (3), p.261-270 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13 |
container_end_page | 270 |
container_issue | 3 |
container_start_page | 261 |
container_title | IEEE transactions on emerging topics in computational intelligence |
container_volume | 3 |
creator | Pan, Tse-Yu Kuo, Chih-Hsuan Liu, Hou-Tim Hu, Min-Chun |
description | In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since intrinsic bias and random noise usually cause unreliable IMU signals, filtering methods are utilized to reduce high- or low-frequency noises of the signals. In addition, to more accurately detect whether the smartphone is moving or not, we extract multiple features from IMU signals and train a movement detection model based on linear discriminant analysis (LDA). Then, a "reset switch" mechanism is applied when the smartphone is detected as in a static state. The "reset switch" mechanism can effectively restrain the accumulated error of displacement calculation. Finally, the trajectory reconstruction results are applied to handwritten letter recognition for English alphabet, and the experimental results show that our proposed trajectory reconstruction method is reliable. |
doi_str_mv | 10.1109/TETCI.2018.2803777 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2296108824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8310024</ieee_id><sourcerecordid>2296108824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gF4WPG-dJJt_RylqCxVBWvAW0mxWtuimJiml395st4inGWbem3n8ELrFMMUY1MPqaTVbTAlgOSUSqBDiAo1IJXBJJPu4_Ndfo0mMWwAgimHKqhGSc9PVh9CmtvssVsFsnU0-HIt3Z30XU9jb1PquWMd-v_SHcuZjKhav6xt01Ziv6CbnOkbr55xjXi7fXhazx2Vp849UStFYhTlXNdScGE6JMbRhAkSdozohzYZyRSsmsKgpCFUznEcgGFfGbjAdo_vh7i74n72LSW_9PnT5pSZEcQxSkiqryKCywccYXKN3of024agx6B6SPkHSPSR9hpRNd4Opdc79GSTFmU9FfwFXLGEd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296108824</pqid></control><display><type>article</type><title>Handwriting Trajectory Reconstruction Using Low-Cost IMU</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pan, Tse-Yu ; Kuo, Chih-Hsuan ; Liu, Hou-Tim ; Hu, Min-Chun</creator><creatorcontrib>Pan, Tse-Yu ; Kuo, Chih-Hsuan ; Liu, Hou-Tim ; Hu, Min-Chun</creatorcontrib><description>In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since intrinsic bias and random noise usually cause unreliable IMU signals, filtering methods are utilized to reduce high- or low-frequency noises of the signals. In addition, to more accurately detect whether the smartphone is moving or not, we extract multiple features from IMU signals and train a movement detection model based on linear discriminant analysis (LDA). Then, a "reset switch" mechanism is applied when the smartphone is detected as in a static state. The "reset switch" mechanism can effectively restrain the accumulated error of displacement calculation. Finally, the trajectory reconstruction results are applied to handwritten letter recognition for English alphabet, and the experimental results show that our proposed trajectory reconstruction method is reliable.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2018.2803777</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Accelerometers ; complementary filter ; convolutional neural network ; Discriminant analysis ; Feature extraction ; Handwriting recognition ; handwritten letter recognition ; Image reconstruction ; Inertial measurement unit ; Inertial platforms ; inertial sensor ; linear discriminant analysis ; Low cost ; Motion perception ; Random noise ; Reconstruction ; Reconstruction algorithms ; Sensitivity ; Smart phones ; Smartphones ; Three axis ; Trajectories ; Trajectory ; trajectory reconstruction</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2019-06, Vol.3 (3), p.261-270</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13</citedby><cites>FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13</cites><orcidid>0000-0001-8570-1575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8310024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Pan, Tse-Yu</creatorcontrib><creatorcontrib>Kuo, Chih-Hsuan</creatorcontrib><creatorcontrib>Liu, Hou-Tim</creatorcontrib><creatorcontrib>Hu, Min-Chun</creatorcontrib><title>Handwriting Trajectory Reconstruction Using Low-Cost IMU</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since intrinsic bias and random noise usually cause unreliable IMU signals, filtering methods are utilized to reduce high- or low-frequency noises of the signals. In addition, to more accurately detect whether the smartphone is moving or not, we extract multiple features from IMU signals and train a movement detection model based on linear discriminant analysis (LDA). Then, a "reset switch" mechanism is applied when the smartphone is detected as in a static state. The "reset switch" mechanism can effectively restrain the accumulated error of displacement calculation. Finally, the trajectory reconstruction results are applied to handwritten letter recognition for English alphabet, and the experimental results show that our proposed trajectory reconstruction method is reliable.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>complementary filter</subject><subject>convolutional neural network</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Handwriting recognition</subject><subject>handwritten letter recognition</subject><subject>Image reconstruction</subject><subject>Inertial measurement unit</subject><subject>Inertial platforms</subject><subject>inertial sensor</subject><subject>linear discriminant analysis</subject><subject>Low cost</subject><subject>Motion perception</subject><subject>Random noise</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Sensitivity</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>Three axis</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>trajectory reconstruction</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWGq_gF4WPG-dJJt_RylqCxVBWvAW0mxWtuimJiml395st4inGWbem3n8ELrFMMUY1MPqaTVbTAlgOSUSqBDiAo1IJXBJJPu4_Ndfo0mMWwAgimHKqhGSc9PVh9CmtvssVsFsnU0-HIt3Z30XU9jb1PquWMd-v_SHcuZjKhav6xt01Ziv6CbnOkbr55xjXi7fXhazx2Vp849UStFYhTlXNdScGE6JMbRhAkSdozohzYZyRSsmsKgpCFUznEcgGFfGbjAdo_vh7i74n72LSW_9PnT5pSZEcQxSkiqryKCywccYXKN3of024agx6B6SPkHSPSR9hpRNd4Opdc79GSTFmU9FfwFXLGEd</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Pan, Tse-Yu</creator><creator>Kuo, Chih-Hsuan</creator><creator>Liu, Hou-Tim</creator><creator>Hu, Min-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8570-1575</orcidid></search><sort><creationdate>20190601</creationdate><title>Handwriting Trajectory Reconstruction Using Low-Cost IMU</title><author>Pan, Tse-Yu ; Kuo, Chih-Hsuan ; Liu, Hou-Tim ; Hu, Min-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>complementary filter</topic><topic>convolutional neural network</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Handwriting recognition</topic><topic>handwritten letter recognition</topic><topic>Image reconstruction</topic><topic>Inertial measurement unit</topic><topic>Inertial platforms</topic><topic>inertial sensor</topic><topic>linear discriminant analysis</topic><topic>Low cost</topic><topic>Motion perception</topic><topic>Random noise</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Sensitivity</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>Three axis</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>trajectory reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Tse-Yu</creatorcontrib><creatorcontrib>Kuo, Chih-Hsuan</creatorcontrib><creatorcontrib>Liu, Hou-Tim</creatorcontrib><creatorcontrib>Hu, Min-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Tse-Yu</au><au>Kuo, Chih-Hsuan</au><au>Liu, Hou-Tim</au><au>Hu, Min-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handwriting Trajectory Reconstruction Using Low-Cost IMU</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>3</volume><issue>3</issue><spage>261</spage><epage>270</epage><pages>261-270</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>In this paper, we propose a trajectory reconstruction method based on low-cost Inertial Measurement Unit (IMU) in smartphones. The IMU used in our work consists of a three-axis accelerometer and a three-axis gyroscope, which can record information of acceleration and rotation, respectively. Since intrinsic bias and random noise usually cause unreliable IMU signals, filtering methods are utilized to reduce high- or low-frequency noises of the signals. In addition, to more accurately detect whether the smartphone is moving or not, we extract multiple features from IMU signals and train a movement detection model based on linear discriminant analysis (LDA). Then, a "reset switch" mechanism is applied when the smartphone is detected as in a static state. The "reset switch" mechanism can effectively restrain the accumulated error of displacement calculation. Finally, the trajectory reconstruction results are applied to handwritten letter recognition for English alphabet, and the experimental results show that our proposed trajectory reconstruction method is reliable.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2018.2803777</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8570-1575</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2471-285X |
ispartof | IEEE transactions on emerging topics in computational intelligence, 2019-06, Vol.3 (3), p.261-270 |
issn | 2471-285X 2471-285X |
language | eng |
recordid | cdi_proquest_journals_2296108824 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceleration Accelerometers complementary filter convolutional neural network Discriminant analysis Feature extraction Handwriting recognition handwritten letter recognition Image reconstruction Inertial measurement unit Inertial platforms inertial sensor linear discriminant analysis Low cost Motion perception Random noise Reconstruction Reconstruction algorithms Sensitivity Smart phones Smartphones Three axis Trajectories Trajectory trajectory reconstruction |
title | Handwriting Trajectory Reconstruction Using Low-Cost IMU |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handwriting%20Trajectory%20Reconstruction%20Using%20Low-Cost%20IMU&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Pan,%20Tse-Yu&rft.date=2019-06-01&rft.volume=3&rft.issue=3&rft.spage=261&rft.epage=270&rft.pages=261-270&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2018.2803777&rft_dat=%3Cproquest_ieee_%3E2296108824%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-87fc91669d0d62a632aa3f5707d803e78ab369345717d3079d51ab307569acb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296108824&rft_id=info:pmid/&rft_ieee_id=8310024&rfr_iscdi=true |