Loading…

Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2

The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2019-09, Vol.115 (13)
Main Authors: Wang, Jing, Guo, Yang, Huang, Yuan, Luo, Hailan, Zhou, Xingjiang, Gu, Changzhi, Liu, Baoli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83
cites cdi_FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83
container_end_page
container_issue 13
container_start_page
container_title Applied physics letters
container_volume 115
creator Wang, Jing
Guo, Yang
Huang, Yuan
Luo, Hailan
Zhou, Xingjiang
Gu, Changzhi
Liu, Baoli
description The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s.
doi_str_mv 10.1063/1.5116263
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2296451432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296451432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmsskmVlKvYLgQkVchSSTlJRpMibT4ry9Iy26EFwdDnz85wLAKUYzjDi9xDOGMSec7oEJRkIUFONqH0wQQrTgNcOH4Cjn5dgyQukEvF9759bZxwCbIaiVNxlGBzeqbe0A7afxfQwZ6gH2SYXsbejhIqnehwXMnTV9itnEboA-wFUMsVWDTfDt2ZJjcOBUm-3Jrk7B6-3Ny_y-eHy6e5hfPRaG1rQvBGclxQIrXVWuJkoTXZYcMUxqy5u61gJXlugGsdI2TrjSIMq15oYxoYSr6BScbXO7FD_WNvdyGdcpjCMlITUvGS4pGdX5Vplx4Zysk13yK5UGiZH8_pzEcve50V5sbR6vH0-N4QdvYvqFsmvcf_hv8hcBAnxv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296451432</pqid></control><display><type>article</type><title>Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Wang, Jing ; Guo, Yang ; Huang, Yuan ; Luo, Hailan ; Zhou, Xingjiang ; Gu, Changzhi ; Liu, Baoli</creator><creatorcontrib>Wang, Jing ; Guo, Yang ; Huang, Yuan ; Luo, Hailan ; Zhou, Xingjiang ; Gu, Changzhi ; Liu, Baoli</creatorcontrib><description>The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5116263</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Decay rate ; Density ; Diffusion ; Diffusion coefficient ; Excitons ; Monolayers ; Selenides ; Semiconductor materials ; Spectroscopy ; Spectrum analysis ; Tungsten compounds</subject><ispartof>Applied physics letters, 2019-09, Vol.115 (13)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83</citedby><cites>FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83</cites><orcidid>0000-0003-0623-875X ; 0000-0002-2689-2807 ; 0000-0002-0828-5093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5116263$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Huang, Yuan</creatorcontrib><creatorcontrib>Luo, Hailan</creatorcontrib><creatorcontrib>Zhou, Xingjiang</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><creatorcontrib>Liu, Baoli</creatorcontrib><title>Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2</title><title>Applied physics letters</title><description>The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s.</description><subject>Applied physics</subject><subject>Decay rate</subject><subject>Density</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Excitons</subject><subject>Monolayers</subject><subject>Selenides</subject><subject>Semiconductor materials</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tungsten compounds</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmsskmVlKvYLgQkVchSSTlJRpMibT4ry9Iy26EFwdDnz85wLAKUYzjDi9xDOGMSec7oEJRkIUFONqH0wQQrTgNcOH4Cjn5dgyQukEvF9759bZxwCbIaiVNxlGBzeqbe0A7afxfQwZ6gH2SYXsbejhIqnehwXMnTV9itnEboA-wFUMsVWDTfDt2ZJjcOBUm-3Jrk7B6-3Ny_y-eHy6e5hfPRaG1rQvBGclxQIrXVWuJkoTXZYcMUxqy5u61gJXlugGsdI2TrjSIMq15oYxoYSr6BScbXO7FD_WNvdyGdcpjCMlITUvGS4pGdX5Vplx4Zysk13yK5UGiZH8_pzEcve50V5sbR6vH0-N4QdvYvqFsmvcf_hv8hcBAnxv</recordid><startdate>20190923</startdate><enddate>20190923</enddate><creator>Wang, Jing</creator><creator>Guo, Yang</creator><creator>Huang, Yuan</creator><creator>Luo, Hailan</creator><creator>Zhou, Xingjiang</creator><creator>Gu, Changzhi</creator><creator>Liu, Baoli</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0623-875X</orcidid><orcidid>https://orcid.org/0000-0002-2689-2807</orcidid><orcidid>https://orcid.org/0000-0002-0828-5093</orcidid></search><sort><creationdate>20190923</creationdate><title>Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2</title><author>Wang, Jing ; Guo, Yang ; Huang, Yuan ; Luo, Hailan ; Zhou, Xingjiang ; Gu, Changzhi ; Liu, Baoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Decay rate</topic><topic>Density</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Excitons</topic><topic>Monolayers</topic><topic>Selenides</topic><topic>Semiconductor materials</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tungsten compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Huang, Yuan</creatorcontrib><creatorcontrib>Luo, Hailan</creatorcontrib><creatorcontrib>Zhou, Xingjiang</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><creatorcontrib>Liu, Baoli</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing</au><au>Guo, Yang</au><au>Huang, Yuan</au><au>Luo, Hailan</au><au>Zhou, Xingjiang</au><au>Gu, Changzhi</au><au>Liu, Baoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2</atitle><jtitle>Applied physics letters</jtitle><date>2019-09-23</date><risdate>2019</risdate><volume>115</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5116263</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0623-875X</orcidid><orcidid>https://orcid.org/0000-0002-2689-2807</orcidid><orcidid>https://orcid.org/0000-0002-0828-5093</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-09, Vol.115 (13)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2296451432
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Applied physics
Decay rate
Density
Diffusion
Diffusion coefficient
Excitons
Monolayers
Selenides
Semiconductor materials
Spectroscopy
Spectrum analysis
Tungsten compounds
title Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20dynamics%20of%20valley%20excitons%20by%20transient%20grating%20spectroscopy%20in%20monolayer%20WSe2&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Jing&rft.date=2019-09-23&rft.volume=115&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5116263&rft_dat=%3Cproquest_cross%3E2296451432%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296451432&rft_id=info:pmid/&rfr_iscdi=true