Loading…
Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2
The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated...
Saved in:
Published in: | Applied physics letters 2019-09, Vol.115 (13) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83 |
container_end_page | |
container_issue | 13 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 115 |
creator | Wang, Jing Guo, Yang Huang, Yuan Luo, Hailan Zhou, Xingjiang Gu, Changzhi Liu, Baoli |
description | The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s. |
doi_str_mv | 10.1063/1.5116263 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2296451432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296451432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmsskmVlKvYLgQkVchSSTlJRpMibT4ry9Iy26EFwdDnz85wLAKUYzjDi9xDOGMSec7oEJRkIUFONqH0wQQrTgNcOH4Cjn5dgyQukEvF9759bZxwCbIaiVNxlGBzeqbe0A7afxfQwZ6gH2SYXsbejhIqnehwXMnTV9itnEboA-wFUMsVWDTfDt2ZJjcOBUm-3Jrk7B6-3Ny_y-eHy6e5hfPRaG1rQvBGclxQIrXVWuJkoTXZYcMUxqy5u61gJXlugGsdI2TrjSIMq15oYxoYSr6BScbXO7FD_WNvdyGdcpjCMlITUvGS4pGdX5Vplx4Zysk13yK5UGiZH8_pzEcve50V5sbR6vH0-N4QdvYvqFsmvcf_hv8hcBAnxv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296451432</pqid></control><display><type>article</type><title>Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Wang, Jing ; Guo, Yang ; Huang, Yuan ; Luo, Hailan ; Zhou, Xingjiang ; Gu, Changzhi ; Liu, Baoli</creator><creatorcontrib>Wang, Jing ; Guo, Yang ; Huang, Yuan ; Luo, Hailan ; Zhou, Xingjiang ; Gu, Changzhi ; Liu, Baoli</creatorcontrib><description>The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5116263</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Decay rate ; Density ; Diffusion ; Diffusion coefficient ; Excitons ; Monolayers ; Selenides ; Semiconductor materials ; Spectroscopy ; Spectrum analysis ; Tungsten compounds</subject><ispartof>Applied physics letters, 2019-09, Vol.115 (13)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83</citedby><cites>FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83</cites><orcidid>0000-0003-0623-875X ; 0000-0002-2689-2807 ; 0000-0002-0828-5093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5116263$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Huang, Yuan</creatorcontrib><creatorcontrib>Luo, Hailan</creatorcontrib><creatorcontrib>Zhou, Xingjiang</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><creatorcontrib>Liu, Baoli</creatorcontrib><title>Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2</title><title>Applied physics letters</title><description>The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s.</description><subject>Applied physics</subject><subject>Decay rate</subject><subject>Density</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Excitons</subject><subject>Monolayers</subject><subject>Selenides</subject><subject>Semiconductor materials</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tungsten compounds</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmsskmVlKvYLgQkVchSSTlJRpMibT4ry9Iy26EFwdDnz85wLAKUYzjDi9xDOGMSec7oEJRkIUFONqH0wQQrTgNcOH4Cjn5dgyQukEvF9759bZxwCbIaiVNxlGBzeqbe0A7afxfQwZ6gH2SYXsbejhIqnehwXMnTV9itnEboA-wFUMsVWDTfDt2ZJjcOBUm-3Jrk7B6-3Ny_y-eHy6e5hfPRaG1rQvBGclxQIrXVWuJkoTXZYcMUxqy5u61gJXlugGsdI2TrjSIMq15oYxoYSr6BScbXO7FD_WNvdyGdcpjCMlITUvGS4pGdX5Vplx4Zysk13yK5UGiZH8_pzEcve50V5sbR6vH0-N4QdvYvqFsmvcf_hv8hcBAnxv</recordid><startdate>20190923</startdate><enddate>20190923</enddate><creator>Wang, Jing</creator><creator>Guo, Yang</creator><creator>Huang, Yuan</creator><creator>Luo, Hailan</creator><creator>Zhou, Xingjiang</creator><creator>Gu, Changzhi</creator><creator>Liu, Baoli</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0623-875X</orcidid><orcidid>https://orcid.org/0000-0002-2689-2807</orcidid><orcidid>https://orcid.org/0000-0002-0828-5093</orcidid></search><sort><creationdate>20190923</creationdate><title>Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2</title><author>Wang, Jing ; Guo, Yang ; Huang, Yuan ; Luo, Hailan ; Zhou, Xingjiang ; Gu, Changzhi ; Liu, Baoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Decay rate</topic><topic>Density</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Excitons</topic><topic>Monolayers</topic><topic>Selenides</topic><topic>Semiconductor materials</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tungsten compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Huang, Yuan</creatorcontrib><creatorcontrib>Luo, Hailan</creatorcontrib><creatorcontrib>Zhou, Xingjiang</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><creatorcontrib>Liu, Baoli</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing</au><au>Guo, Yang</au><au>Huang, Yuan</au><au>Luo, Hailan</au><au>Zhou, Xingjiang</au><au>Gu, Changzhi</au><au>Liu, Baoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2</atitle><jtitle>Applied physics letters</jtitle><date>2019-09-23</date><risdate>2019</risdate><volume>115</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5116263</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0623-875X</orcidid><orcidid>https://orcid.org/0000-0002-2689-2807</orcidid><orcidid>https://orcid.org/0000-0002-0828-5093</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2019-09, Vol.115 (13) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2296451432 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Applied physics Decay rate Density Diffusion Diffusion coefficient Excitons Monolayers Selenides Semiconductor materials Spectroscopy Spectrum analysis Tungsten compounds |
title | Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20dynamics%20of%20valley%20excitons%20by%20transient%20grating%20spectroscopy%20in%20monolayer%20WSe2&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Jing&rft.date=2019-09-23&rft.volume=115&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5116263&rft_dat=%3Cproquest_cross%3E2296451432%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-76543171ab88f92ab2b44605129e6d99b718e2bd054edf7f4c036bb6c557a7f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296451432&rft_id=info:pmid/&rfr_iscdi=true |