Loading…

Inhomogeneous Neumann-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques

We consider the inhomogeneous Neumann-boundary value problem for the nonlinear Schrödinger equations on the half-line. We present sufficient conditions of initial and boundary data which ensure asymptotic behavior of small solutions to the equations by using the classical energy method and factoriza...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2019-09, Vol.60 (9)
Main Authors: Esquivel, Liliana, Hayashi, Nakao, Kaikina, Elena I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-2dabccab390e89ce3b2ecafdad70b3370a731336e93cbe8b32c25a59dc7cfa453
cites cdi_FETCH-LOGICAL-c393t-2dabccab390e89ce3b2ecafdad70b3370a731336e93cbe8b32c25a59dc7cfa453
container_end_page
container_issue 9
container_start_page
container_title Journal of mathematical physics
container_volume 60
creator Esquivel, Liliana
Hayashi, Nakao
Kaikina, Elena I.
description We consider the inhomogeneous Neumann-boundary value problem for the nonlinear Schrödinger equations on the half-line. We present sufficient conditions of initial and boundary data which ensure asymptotic behavior of small solutions to the equations by using the classical energy method and factorization techniques.
doi_str_mv 10.1063/1.5083078
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2296452481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296452481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2dabccab390e89ce3b2ecafdad70b3370a731336e93cbe8b32c25a59dc7cfa453</originalsourceid><addsrcrecordid>eNqdkMtKAzEUhoMoWKsL3yDgSmFqLjOdzFKKl0LRhboOSeZMmzKTtMlMQRc-li_gizm9gHtXBw4f_zn_h9AlJSNKxvyWjjIiOMnFERpQIookH2fiGA0IYSxhqRCn6CzGJSGUijQdoK-pW_jGz8GB7yJ-hq5RziXad65U4QNvVN0BXgWva2hw5QP2DnBpG3DReqdq7LyrrQMV8KtZhJ_v0ro5BAzrTrU9EfHGKlwp0_pgP3cr3IJZOLvuIJ6jk0rVES4Oc4jeH-7fJk_J7OVxOrmbJYYXvE1YqbQxSvOCgCgMcM3AqKpUZU405zlROaecj6HgRoPQnBmWqawoTW4qlWZ8iK72uX2T7d1WLn0X-vejZKwYp1mvhvbU9Z4ywccYoJKrYJteg6REbvVKKg96e_Zmz0Zj212t_8EbH_5AuSor_gswso4f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296452481</pqid></control><display><type>article</type><title>Inhomogeneous Neumann-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Esquivel, Liliana ; Hayashi, Nakao ; Kaikina, Elena I.</creator><creatorcontrib>Esquivel, Liliana ; Hayashi, Nakao ; Kaikina, Elena I.</creatorcontrib><description>We consider the inhomogeneous Neumann-boundary value problem for the nonlinear Schrödinger equations on the half-line. We present sufficient conditions of initial and boundary data which ensure asymptotic behavior of small solutions to the equations by using the classical energy method and factorization techniques.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5083078</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Asymptotic properties ; Boundary value problems ; Factorization ; Mathematical analysis ; Neumann problem ; Nonlinear equations ; Physics ; Schrodinger equation</subject><ispartof>Journal of mathematical physics, 2019-09, Vol.60 (9)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2dabccab390e89ce3b2ecafdad70b3370a731336e93cbe8b32c25a59dc7cfa453</citedby><cites>FETCH-LOGICAL-c393t-2dabccab390e89ce3b2ecafdad70b3370a731336e93cbe8b32c25a59dc7cfa453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5083078$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Esquivel, Liliana</creatorcontrib><creatorcontrib>Hayashi, Nakao</creatorcontrib><creatorcontrib>Kaikina, Elena I.</creatorcontrib><title>Inhomogeneous Neumann-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques</title><title>Journal of mathematical physics</title><description>We consider the inhomogeneous Neumann-boundary value problem for the nonlinear Schrödinger equations on the half-line. We present sufficient conditions of initial and boundary data which ensure asymptotic behavior of small solutions to the equations by using the classical energy method and factorization techniques.</description><subject>Asymptotic properties</subject><subject>Boundary value problems</subject><subject>Factorization</subject><subject>Mathematical analysis</subject><subject>Neumann problem</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Schrodinger equation</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkMtKAzEUhoMoWKsL3yDgSmFqLjOdzFKKl0LRhboOSeZMmzKTtMlMQRc-li_gizm9gHtXBw4f_zn_h9AlJSNKxvyWjjIiOMnFERpQIookH2fiGA0IYSxhqRCn6CzGJSGUijQdoK-pW_jGz8GB7yJ-hq5RziXad65U4QNvVN0BXgWva2hw5QP2DnBpG3DReqdq7LyrrQMV8KtZhJ_v0ro5BAzrTrU9EfHGKlwp0_pgP3cr3IJZOLvuIJ6jk0rVES4Oc4jeH-7fJk_J7OVxOrmbJYYXvE1YqbQxSvOCgCgMcM3AqKpUZU405zlROaecj6HgRoPQnBmWqawoTW4qlWZ8iK72uX2T7d1WLn0X-vejZKwYp1mvhvbU9Z4ywccYoJKrYJteg6REbvVKKg96e_Zmz0Zj212t_8EbH_5AuSor_gswso4f</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Esquivel, Liliana</creator><creator>Hayashi, Nakao</creator><creator>Kaikina, Elena I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201909</creationdate><title>Inhomogeneous Neumann-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques</title><author>Esquivel, Liliana ; Hayashi, Nakao ; Kaikina, Elena I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2dabccab390e89ce3b2ecafdad70b3370a731336e93cbe8b32c25a59dc7cfa453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Boundary value problems</topic><topic>Factorization</topic><topic>Mathematical analysis</topic><topic>Neumann problem</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esquivel, Liliana</creatorcontrib><creatorcontrib>Hayashi, Nakao</creatorcontrib><creatorcontrib>Kaikina, Elena I.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esquivel, Liliana</au><au>Hayashi, Nakao</au><au>Kaikina, Elena I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhomogeneous Neumann-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-09</date><risdate>2019</risdate><volume>60</volume><issue>9</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider the inhomogeneous Neumann-boundary value problem for the nonlinear Schrödinger equations on the half-line. We present sufficient conditions of initial and boundary data which ensure asymptotic behavior of small solutions to the equations by using the classical energy method and factorization techniques.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5083078</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2019-09, Vol.60 (9)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2296452481
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Asymptotic properties
Boundary value problems
Factorization
Mathematical analysis
Neumann problem
Nonlinear equations
Physics
Schrodinger equation
title Inhomogeneous Neumann-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhomogeneous%20Neumann-boundary%20value%20problem%20for%20one%20dimensional%20nonlinear%20Schr%C3%B6dinger%20equations%20via%20factorization%20techniques&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Esquivel,%20Liliana&rft.date=2019-09&rft.volume=60&rft.issue=9&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5083078&rft_dat=%3Cproquest_cross%3E2296452481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-2dabccab390e89ce3b2ecafdad70b3370a731336e93cbe8b32c25a59dc7cfa453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296452481&rft_id=info:pmid/&rfr_iscdi=true