Loading…
Multiscale dynamics of an adaptive catalytic network
We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with...
Saved in:
Published in: | Mathematical modelling of natural phenomena 2019, Vol.14 (4), p.402 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53 |
container_end_page | |
container_issue | 4 |
container_start_page | 402 |
container_title | Mathematical modelling of natural phenomena |
container_volume | 14 |
creator | Kuehn, Christian |
description | We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis. |
doi_str_mv | 10.1051/mmnp/2019015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2296612831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296612831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsGh3_oCAW2Pvzc08spT6hIoUFJfDZDKBtHnUmanaf29Ki3dzFvfjHPgYu0K4ReA467p-M8sAC0B-wiYoBaQCAU_ZBApJKadcnbNpCCsYjzAngAnLX7dtbII1rUuqXW-6xoZkqBPTJ6Yym9h8u8SaaNpdbGzSu_gz-PUlO6tNG9z0mBfs4_Hhff6cLt6eXuZ3i9QSFTEtykpyULmkGjLleEl5xUuhnAKD3HGUhbLCIMmcSlu6AoThsqrHR0Wl43TBrg-9Gz98bV2IejVsfT9O6iwrhMBMEY7UzYGyfgjBu1pvfNMZv9MIeq9G79Xoo5oRTw94E6L7_WeNX2shSXKt4FMvliiWAu-1oj8_OGRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296612831</pqid></control><display><type>article</type><title>Multiscale dynamics of an adaptive catalytic network</title><source>EZB*</source><creator>Kuehn, Christian</creator><contributor>Mortell, M.P. ; Lázaro, J. T. ; Korobeinikov, A. ; Sobolev, V.A.</contributor><creatorcontrib>Kuehn, Christian ; Mortell, M.P. ; Lázaro, J. T. ; Korobeinikov, A. ; Sobolev, V.A.</creatorcontrib><description>We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2019015</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>05C82 ; 37C10 ; 92B20 ; Adaptive network ; Apexes ; Asymptotic properties ; autocatalytic reaction ; Catalysis ; co-evolutionary network ; Differential equations ; Graph theory ; Insertion ; Jain–Krishna model ; Mathematical models ; multiple time scale system ; Multiscale analysis ; network dynamics ; Ordinary differential equations ; pre-biotic evolution ; random graph</subject><ispartof>Mathematical modelling of natural phenomena, 2019, Vol.14 (4), p.402</ispartof><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2019/04/mmnp180132/mmnp180132.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53</citedby><cites>FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53</cites><orcidid>0000-0002-7063-6173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Mortell, M.P.</contributor><contributor>Lázaro, J. T.</contributor><contributor>Korobeinikov, A.</contributor><contributor>Sobolev, V.A.</contributor><creatorcontrib>Kuehn, Christian</creatorcontrib><title>Multiscale dynamics of an adaptive catalytic network</title><title>Mathematical modelling of natural phenomena</title><description>We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis.</description><subject>05C82</subject><subject>37C10</subject><subject>92B20</subject><subject>Adaptive network</subject><subject>Apexes</subject><subject>Asymptotic properties</subject><subject>autocatalytic reaction</subject><subject>Catalysis</subject><subject>co-evolutionary network</subject><subject>Differential equations</subject><subject>Graph theory</subject><subject>Insertion</subject><subject>Jain–Krishna model</subject><subject>Mathematical models</subject><subject>multiple time scale system</subject><subject>Multiscale analysis</subject><subject>network dynamics</subject><subject>Ordinary differential equations</subject><subject>pre-biotic evolution</subject><subject>random graph</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsGh3_oCAW2Pvzc08spT6hIoUFJfDZDKBtHnUmanaf29Ki3dzFvfjHPgYu0K4ReA467p-M8sAC0B-wiYoBaQCAU_ZBApJKadcnbNpCCsYjzAngAnLX7dtbII1rUuqXW-6xoZkqBPTJ6Yym9h8u8SaaNpdbGzSu_gz-PUlO6tNG9z0mBfs4_Hhff6cLt6eXuZ3i9QSFTEtykpyULmkGjLleEl5xUuhnAKD3HGUhbLCIMmcSlu6AoThsqrHR0Wl43TBrg-9Gz98bV2IejVsfT9O6iwrhMBMEY7UzYGyfgjBu1pvfNMZv9MIeq9G79Xoo5oRTw94E6L7_WeNX2shSXKt4FMvliiWAu-1oj8_OGRK</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kuehn, Christian</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7063-6173</orcidid></search><sort><creationdate>2019</creationdate><title>Multiscale dynamics of an adaptive catalytic network</title><author>Kuehn, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>05C82</topic><topic>37C10</topic><topic>92B20</topic><topic>Adaptive network</topic><topic>Apexes</topic><topic>Asymptotic properties</topic><topic>autocatalytic reaction</topic><topic>Catalysis</topic><topic>co-evolutionary network</topic><topic>Differential equations</topic><topic>Graph theory</topic><topic>Insertion</topic><topic>Jain–Krishna model</topic><topic>Mathematical models</topic><topic>multiple time scale system</topic><topic>Multiscale analysis</topic><topic>network dynamics</topic><topic>Ordinary differential equations</topic><topic>pre-biotic evolution</topic><topic>random graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehn, Christian</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehn, Christian</au><au>Mortell, M.P.</au><au>Lázaro, J. T.</au><au>Korobeinikov, A.</au><au>Sobolev, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale dynamics of an adaptive catalytic network</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2019</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><spage>402</spage><pages>402-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2019015</doi><orcidid>https://orcid.org/0000-0002-7063-6173</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-5348 |
ispartof | Mathematical modelling of natural phenomena, 2019, Vol.14 (4), p.402 |
issn | 0973-5348 1760-6101 |
language | eng |
recordid | cdi_proquest_journals_2296612831 |
source | EZB* |
subjects | 05C82 37C10 92B20 Adaptive network Apexes Asymptotic properties autocatalytic reaction Catalysis co-evolutionary network Differential equations Graph theory Insertion Jain–Krishna model Mathematical models multiple time scale system Multiscale analysis network dynamics Ordinary differential equations pre-biotic evolution random graph |
title | Multiscale dynamics of an adaptive catalytic network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20dynamics%20of%20an%20adaptive%20catalytic%20network&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Kuehn,%20Christian&rft.date=2019&rft.volume=14&rft.issue=4&rft.spage=402&rft.pages=402-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2019015&rft_dat=%3Cproquest_cross%3E2296612831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296612831&rft_id=info:pmid/&rfr_iscdi=true |