Loading…

Multiscale dynamics of an adaptive catalytic network

We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical modelling of natural phenomena 2019, Vol.14 (4), p.402
Main Author: Kuehn, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53
cites cdi_FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53
container_end_page
container_issue 4
container_start_page 402
container_title Mathematical modelling of natural phenomena
container_volume 14
creator Kuehn, Christian
description We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis.
doi_str_mv 10.1051/mmnp/2019015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2296612831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296612831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsGh3_oCAW2Pvzc08spT6hIoUFJfDZDKBtHnUmanaf29Ki3dzFvfjHPgYu0K4ReA467p-M8sAC0B-wiYoBaQCAU_ZBApJKadcnbNpCCsYjzAngAnLX7dtbII1rUuqXW-6xoZkqBPTJ6Yym9h8u8SaaNpdbGzSu_gz-PUlO6tNG9z0mBfs4_Hhff6cLt6eXuZ3i9QSFTEtykpyULmkGjLleEl5xUuhnAKD3HGUhbLCIMmcSlu6AoThsqrHR0Wl43TBrg-9Gz98bV2IejVsfT9O6iwrhMBMEY7UzYGyfgjBu1pvfNMZv9MIeq9G79Xoo5oRTw94E6L7_WeNX2shSXKt4FMvliiWAu-1oj8_OGRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296612831</pqid></control><display><type>article</type><title>Multiscale dynamics of an adaptive catalytic network</title><source>EZB*</source><creator>Kuehn, Christian</creator><contributor>Mortell, M.P. ; Lázaro, J. T. ; Korobeinikov, A. ; Sobolev, V.A.</contributor><creatorcontrib>Kuehn, Christian ; Mortell, M.P. ; Lázaro, J. T. ; Korobeinikov, A. ; Sobolev, V.A.</creatorcontrib><description>We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2019015</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>05C82 ; 37C10 ; 92B20 ; Adaptive network ; Apexes ; Asymptotic properties ; autocatalytic reaction ; Catalysis ; co-evolutionary network ; Differential equations ; Graph theory ; Insertion ; Jain–Krishna model ; Mathematical models ; multiple time scale system ; Multiscale analysis ; network dynamics ; Ordinary differential equations ; pre-biotic evolution ; random graph</subject><ispartof>Mathematical modelling of natural phenomena, 2019, Vol.14 (4), p.402</ispartof><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2019/04/mmnp180132/mmnp180132.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53</citedby><cites>FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53</cites><orcidid>0000-0002-7063-6173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Mortell, M.P.</contributor><contributor>Lázaro, J. T.</contributor><contributor>Korobeinikov, A.</contributor><contributor>Sobolev, V.A.</contributor><creatorcontrib>Kuehn, Christian</creatorcontrib><title>Multiscale dynamics of an adaptive catalytic network</title><title>Mathematical modelling of natural phenomena</title><description>We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis.</description><subject>05C82</subject><subject>37C10</subject><subject>92B20</subject><subject>Adaptive network</subject><subject>Apexes</subject><subject>Asymptotic properties</subject><subject>autocatalytic reaction</subject><subject>Catalysis</subject><subject>co-evolutionary network</subject><subject>Differential equations</subject><subject>Graph theory</subject><subject>Insertion</subject><subject>Jain–Krishna model</subject><subject>Mathematical models</subject><subject>multiple time scale system</subject><subject>Multiscale analysis</subject><subject>network dynamics</subject><subject>Ordinary differential equations</subject><subject>pre-biotic evolution</subject><subject>random graph</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsGh3_oCAW2Pvzc08spT6hIoUFJfDZDKBtHnUmanaf29Ki3dzFvfjHPgYu0K4ReA467p-M8sAC0B-wiYoBaQCAU_ZBApJKadcnbNpCCsYjzAngAnLX7dtbII1rUuqXW-6xoZkqBPTJ6Yym9h8u8SaaNpdbGzSu_gz-PUlO6tNG9z0mBfs4_Hhff6cLt6eXuZ3i9QSFTEtykpyULmkGjLleEl5xUuhnAKD3HGUhbLCIMmcSlu6AoThsqrHR0Wl43TBrg-9Gz98bV2IejVsfT9O6iwrhMBMEY7UzYGyfgjBu1pvfNMZv9MIeq9G79Xoo5oRTw94E6L7_WeNX2shSXKt4FMvliiWAu-1oj8_OGRK</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kuehn, Christian</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7063-6173</orcidid></search><sort><creationdate>2019</creationdate><title>Multiscale dynamics of an adaptive catalytic network</title><author>Kuehn, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>05C82</topic><topic>37C10</topic><topic>92B20</topic><topic>Adaptive network</topic><topic>Apexes</topic><topic>Asymptotic properties</topic><topic>autocatalytic reaction</topic><topic>Catalysis</topic><topic>co-evolutionary network</topic><topic>Differential equations</topic><topic>Graph theory</topic><topic>Insertion</topic><topic>Jain–Krishna model</topic><topic>Mathematical models</topic><topic>multiple time scale system</topic><topic>Multiscale analysis</topic><topic>network dynamics</topic><topic>Ordinary differential equations</topic><topic>pre-biotic evolution</topic><topic>random graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehn, Christian</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehn, Christian</au><au>Mortell, M.P.</au><au>Lázaro, J. T.</au><au>Korobeinikov, A.</au><au>Sobolev, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale dynamics of an adaptive catalytic network</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2019</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><spage>402</spage><pages>402-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2019015</doi><orcidid>https://orcid.org/0000-0002-7063-6173</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-5348
ispartof Mathematical modelling of natural phenomena, 2019, Vol.14 (4), p.402
issn 0973-5348
1760-6101
language eng
recordid cdi_proquest_journals_2296612831
source EZB*
subjects 05C82
37C10
92B20
Adaptive network
Apexes
Asymptotic properties
autocatalytic reaction
Catalysis
co-evolutionary network
Differential equations
Graph theory
Insertion
Jain–Krishna model
Mathematical models
multiple time scale system
Multiscale analysis
network dynamics
Ordinary differential equations
pre-biotic evolution
random graph
title Multiscale dynamics of an adaptive catalytic network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20dynamics%20of%20an%20adaptive%20catalytic%20network&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Kuehn,%20Christian&rft.date=2019&rft.volume=14&rft.issue=4&rft.spage=402&rft.pages=402-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2019015&rft_dat=%3Cproquest_cross%3E2296612831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-9bd7508473f028e5b34d5b68e80a15e51798c6a13743bcbe906a57df517d3be53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296612831&rft_id=info:pmid/&rfr_iscdi=true