Loading…

Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition

The Ca2+-activated protease calpain has been shown to play a deleterious role in the heart during ischemia-reperfusion (I/R). We tested the hypothesis that exercise training would minimize I/R-induced calpain activation and provide cardioprotection against I/R-induced injury. Hearts from adult male...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Heart and circulatory physiology 2006-01, Vol.59 (1), p.H128
Main Authors: French, Joel P, Quindry, John C, Falk, Darin J, Staib, Jessica L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Ca2+-activated protease calpain has been shown to play a deleterious role in the heart during ischemia-reperfusion (I/R). We tested the hypothesis that exercise training would minimize I/R-induced calpain activation and provide cardioprotection against I/R-induced injury. Hearts from adult male rats were isolated in a working heart preparation, and myocardial injury was induced with 25 min of global ischemia followed by 45 min of reperfusion. In sedentary control rats, I/R significantly increased calpain activity and impaired cardiac performance (cardiac work during reperfusion = 24% of baseline). Compared with sedentary animals, exercise training prevented the I/R-induced rise in calpain activity and improved cardiac work (recovery = 80% of baseline). Similar to exercise, pharmacological inhibition of calpain activity resulted in comparable cardioprotection against I/R injury (recovery = 86% of baseline). The exercise-induced protection against I/R-induced calpain activation was not due to altered myocardial protein levels of calpain or calpastatin. However, exercise training was associated with increased myocardial antioxidant enzyme activity (Mn-SOD, catalase) and a reduction in oxidative stress. Importantly, exercise training also prevented the I/R-induced degradation of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a. These findings suggest that increases in endogenous antioxidants may diminish the free radical-mediated damage and/or degradation of Ca2+ handling proteins (such as SERCA2a) typically observed after I/R. In conclusion, these results support the concept that calpain activation is an important component of I/R-induced injury and that exercise training provides cardioprotection against I/R injury, at least in part, by attenuating I/R-induced calpain activation. [PUBLICATION ABSTRACT]
ISSN:0363-6135
1522-1539