Loading…
How to project customer retention
At the heart of any contractual or subscription-oriented business model is the notion of the retention rate. An important managerial task is to take a series of past retention numbers for a given group of customers and project them into the future to make more accurate predictions about customer ten...
Saved in:
Published in: | Journal of interactive marketing 2007, Vol.21 (1), p.76-90 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3754-6087741c898f1fde0b3dee77b6d5cf8e7984c8d5ecf8bfd54c54254988b7d71a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3754-6087741c898f1fde0b3dee77b6d5cf8e7984c8d5ecf8bfd54c54254988b7d71a3 |
container_end_page | 90 |
container_issue | 1 |
container_start_page | 76 |
container_title | Journal of interactive marketing |
container_volume | 21 |
creator | Fader, Peter S. Hardie, Bruce G.S. |
description | At the heart of any contractual or subscription-oriented business model is the notion of the retention rate. An important managerial task is to take a series of past retention numbers for a given group of customers and project them into the future to make more accurate predictions about customer tenure, lifetime value, and so on. As an alternative to common “curve-fitting” regression models, we develop and demonstrate a probability model with a well-grounded “story” for the churn process. We show that our basic model (known as a “shifted-beta-geometric”) can be implemented in a simple Microsoft Excel spreadsheet and provides remarkably accurate forecasts and other useful diagnostics about customer retention. We provide a detailed appendix covering the implementation details and offer additional pointers to other related models. |
doi_str_mv | 10.1002/dir.20074 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_229711941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1094996807700233</els_id><sourcerecordid>1193251621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3754-6087741c898f1fde0b3dee77b6d5cf8e7984c8d5ecf8bfd54c54254988b7d71a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv8HqzcO2k02ySY5S_7RQEETPoZvMQkq7qcnW4rc3unrT08zA782beYRcUphQgGrqfJxUAJIfkREVFZR1Ldhx7kHzUutanZKzlNYAwGrJRuRqHg5FH4pdDGu0fWH3qQ9bjEXEHrveh-6cnLSrTcKLnzomrw_3L7N5uXx6XMxul6VlUvCyBiUlp1Zp1dLWITTMIUrZ1E7YVqHUilvlBOahaZ3gVvBKcK1UI52kKzYm18PefMrbHlNv1mEfu2xpqkpLSjWnGboZIBtDShFbs4t-u4ofhoL5CsDkAMx3AJmdDuzBb_Djf9DcLZ5_FWxQYP7z3WM0yXrsLGY2h2Nc8H_4fAKQ8Wzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229711941</pqid></control><display><type>article</type><title>How to project customer retention</title><source>BSC - Ebsco (Business Source Ultimate)</source><source>SAGE</source><creator>Fader, Peter S. ; Hardie, Bruce G.S.</creator><creatorcontrib>Fader, Peter S. ; Hardie, Bruce G.S.</creatorcontrib><description>At the heart of any contractual or subscription-oriented business model is the notion of the retention rate. An important managerial task is to take a series of past retention numbers for a given group of customers and project them into the future to make more accurate predictions about customer tenure, lifetime value, and so on. As an alternative to common “curve-fitting” regression models, we develop and demonstrate a probability model with a well-grounded “story” for the churn process. We show that our basic model (known as a “shifted-beta-geometric”) can be implemented in a simple Microsoft Excel spreadsheet and provides remarkably accurate forecasts and other useful diagnostics about customer retention. We provide a detailed appendix covering the implementation details and offer additional pointers to other related models.</description><identifier>ISSN: 1094-9968</identifier><identifier>EISSN: 1520-6653</identifier><identifier>DOI: 10.1002/dir.20074</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>Business models ; Customer retention ; Regression analysis ; Studies</subject><ispartof>Journal of interactive marketing, 2007, Vol.21 (1), p.76-90</ispartof><rights>2007 Direct Marketing Educational Foundation, Inc. Originally published in [2007] by Wiley Periodicals, Inc.</rights><rights>2007 Wiley Periodicals, Inc. and Direct Marketing Educational Foundation, Inc.</rights><rights>Copyright Wiley Periodicals Inc. Winter 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3754-6087741c898f1fde0b3dee77b6d5cf8e7984c8d5ecf8bfd54c54254988b7d71a3</citedby><cites>FETCH-LOGICAL-c3754-6087741c898f1fde0b3dee77b6d5cf8e7984c8d5ecf8bfd54c54254988b7d71a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fader, Peter S.</creatorcontrib><creatorcontrib>Hardie, Bruce G.S.</creatorcontrib><title>How to project customer retention</title><title>Journal of interactive marketing</title><description>At the heart of any contractual or subscription-oriented business model is the notion of the retention rate. An important managerial task is to take a series of past retention numbers for a given group of customers and project them into the future to make more accurate predictions about customer tenure, lifetime value, and so on. As an alternative to common “curve-fitting” regression models, we develop and demonstrate a probability model with a well-grounded “story” for the churn process. We show that our basic model (known as a “shifted-beta-geometric”) can be implemented in a simple Microsoft Excel spreadsheet and provides remarkably accurate forecasts and other useful diagnostics about customer retention. We provide a detailed appendix covering the implementation details and offer additional pointers to other related models.</description><subject>Business models</subject><subject>Customer retention</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>1094-9968</issn><issn>1520-6653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv8HqzcO2k02ySY5S_7RQEETPoZvMQkq7qcnW4rc3unrT08zA782beYRcUphQgGrqfJxUAJIfkREVFZR1Ldhx7kHzUutanZKzlNYAwGrJRuRqHg5FH4pdDGu0fWH3qQ9bjEXEHrveh-6cnLSrTcKLnzomrw_3L7N5uXx6XMxul6VlUvCyBiUlp1Zp1dLWITTMIUrZ1E7YVqHUilvlBOahaZ3gVvBKcK1UI52kKzYm18PefMrbHlNv1mEfu2xpqkpLSjWnGboZIBtDShFbs4t-u4ofhoL5CsDkAMx3AJmdDuzBb_Djf9DcLZ5_FWxQYP7z3WM0yXrsLGY2h2Nc8H_4fAKQ8Wzc</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Fader, Peter S.</creator><creator>Hardie, Bruce G.S.</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2007</creationdate><title>How to project customer retention</title><author>Fader, Peter S. ; Hardie, Bruce G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3754-6087741c898f1fde0b3dee77b6d5cf8e7984c8d5ecf8bfd54c54254988b7d71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Business models</topic><topic>Customer retention</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fader, Peter S.</creatorcontrib><creatorcontrib>Hardie, Bruce G.S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of interactive marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fader, Peter S.</au><au>Hardie, Bruce G.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to project customer retention</atitle><jtitle>Journal of interactive marketing</jtitle><date>2007</date><risdate>2007</risdate><volume>21</volume><issue>1</issue><spage>76</spage><epage>90</epage><pages>76-90</pages><issn>1094-9968</issn><eissn>1520-6653</eissn><abstract>At the heart of any contractual or subscription-oriented business model is the notion of the retention rate. An important managerial task is to take a series of past retention numbers for a given group of customers and project them into the future to make more accurate predictions about customer tenure, lifetime value, and so on. As an alternative to common “curve-fitting” regression models, we develop and demonstrate a probability model with a well-grounded “story” for the churn process. We show that our basic model (known as a “shifted-beta-geometric”) can be implemented in a simple Microsoft Excel spreadsheet and provides remarkably accurate forecasts and other useful diagnostics about customer retention. We provide a detailed appendix covering the implementation details and offer additional pointers to other related models.</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><doi>10.1002/dir.20074</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-9968 |
ispartof | Journal of interactive marketing, 2007, Vol.21 (1), p.76-90 |
issn | 1094-9968 1520-6653 |
language | eng |
recordid | cdi_proquest_journals_229711941 |
source | BSC - Ebsco (Business Source Ultimate); SAGE |
subjects | Business models Customer retention Regression analysis Studies |
title | How to project customer retention |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20project%20customer%20retention&rft.jtitle=Journal%20of%20interactive%20marketing&rft.au=Fader,%20Peter%20S.&rft.date=2007&rft.volume=21&rft.issue=1&rft.spage=76&rft.epage=90&rft.pages=76-90&rft.issn=1094-9968&rft.eissn=1520-6653&rft_id=info:doi/10.1002/dir.20074&rft_dat=%3Cproquest_cross%3E1193251621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3754-6087741c898f1fde0b3dee77b6d5cf8e7984c8d5ecf8bfd54c54254988b7d71a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=229711941&rft_id=info:pmid/&rfr_iscdi=true |