Loading…
Three Dimensional Sums of Character Gabor Systems
In deterministic compressive sensing, one constructs sampling matrices that recover sparse signals from highly incomplete measurements. However, the so-called square-root bottleneck limits the usefulness of such matrices, as they are only able to recover exceedingly sparse signals with respect to th...
Saved in:
Published in: | arXiv.org 2019-09 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kung-Ching, Lin |
description | In deterministic compressive sensing, one constructs sampling matrices that recover sparse signals from highly incomplete measurements. However, the so-called square-root bottleneck limits the usefulness of such matrices, as they are only able to recover exceedingly sparse signals with respect to the matrix dimension. In view of the flat restricted isometry property (flat RIP) proposed by Bourgain et al., we provide a partial solution to the bottleneck problem with the Gabor system of Legendre symbols. When summing over consecutive vectors, the estimate gives a nontrivial upper bound required for the bottleneck problem. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2297562495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297562495</sourcerecordid><originalsourceid>FETCH-proquest_journals_22975624953</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDMkoSk1VcMnMTc0rzszPS8xRCC7NLVbIT1NwzkgsSkwuSS1ScE9Myi9SCK4sLknNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUCDiuONjCzNTc2MTCxNjYlTBQB7vTM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297562495</pqid></control><display><type>article</type><title>Three Dimensional Sums of Character Gabor Systems</title><source>Publicly Available Content Database</source><creator>Kung-Ching, Lin</creator><creatorcontrib>Kung-Ching, Lin</creatorcontrib><description>In deterministic compressive sensing, one constructs sampling matrices that recover sparse signals from highly incomplete measurements. However, the so-called square-root bottleneck limits the usefulness of such matrices, as they are only able to recover exceedingly sparse signals with respect to the matrix dimension. In view of the flat restricted isometry property (flat RIP) proposed by Bourgain et al., we provide a partial solution to the bottleneck problem with the Gabor system of Legendre symbols. When summing over consecutive vectors, the estimate gives a nontrivial upper bound required for the bottleneck problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Upper bounds</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2297562495?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kung-Ching, Lin</creatorcontrib><title>Three Dimensional Sums of Character Gabor Systems</title><title>arXiv.org</title><description>In deterministic compressive sensing, one constructs sampling matrices that recover sparse signals from highly incomplete measurements. However, the so-called square-root bottleneck limits the usefulness of such matrices, as they are only able to recover exceedingly sparse signals with respect to the matrix dimension. In view of the flat restricted isometry property (flat RIP) proposed by Bourgain et al., we provide a partial solution to the bottleneck problem with the Gabor system of Legendre symbols. When summing over consecutive vectors, the estimate gives a nontrivial upper bound required for the bottleneck problem.</description><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDMkoSk1VcMnMTc0rzszPS8xRCC7NLVbIT1NwzkgsSkwuSS1ScE9Myi9SCK4sLknNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUCDiuONjCzNTc2MTCxNjYlTBQB7vTM0</recordid><startdate>20190925</startdate><enddate>20190925</enddate><creator>Kung-Ching, Lin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190925</creationdate><title>Three Dimensional Sums of Character Gabor Systems</title><author>Kung-Ching, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22975624953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Kung-Ching, Lin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kung-Ching, Lin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Three Dimensional Sums of Character Gabor Systems</atitle><jtitle>arXiv.org</jtitle><date>2019-09-25</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In deterministic compressive sensing, one constructs sampling matrices that recover sparse signals from highly incomplete measurements. However, the so-called square-root bottleneck limits the usefulness of such matrices, as they are only able to recover exceedingly sparse signals with respect to the matrix dimension. In view of the flat restricted isometry property (flat RIP) proposed by Bourgain et al., we provide a partial solution to the bottleneck problem with the Gabor system of Legendre symbols. When summing over consecutive vectors, the estimate gives a nontrivial upper bound required for the bottleneck problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2297562495 |
source | Publicly Available Content Database |
subjects | Upper bounds |
title | Three Dimensional Sums of Character Gabor Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Three%20Dimensional%20Sums%20of%20Character%20Gabor%20Systems&rft.jtitle=arXiv.org&rft.au=Kung-Ching,%20Lin&rft.date=2019-09-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2297562495%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22975624953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2297562495&rft_id=info:pmid/&rfr_iscdi=true |