Loading…

Kojima-1Lb Is a Mildly Cold Neptune around the Brightest Microlensing Host Star

We report the analysis of additional multiband photometry and spectroscopy and new adaptive optics (AO) imaging of the nearby planetary microlensing event TCP J05074264+2447555 (Kojima-1), which was discovered toward the Galactic anticenter in 2017 (Nucita et al.). We confirm the planetary nature of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Authors: Fukui, A, Suzuki, D, Koshimoto, N, Bachelet, E, Vanmunster, T, Storey, D, Maehara, H, Yanagisawa, K, Yamada, T, Yonehara, A, Hirano, T, Bennett, D P, Bozza, V, Mawet, D, Penny, M T, Awiphan, S, Oksanen, A, Heintz, T M, Oberst, T E, Bejar, V J S, Casasayas-Barris, N, Chen, G, Crouzet, N, Hidalgo, D, Klagyivik, P, Murgas, F, Narita, N, Palle, E, Parviainen, H, Watanabe, N, Kusakabe, N, Mori, M, Terada, Y, de Leon, J P, Hernandez, A, Luque, R, Monelli, M, Montanes-Rodriguez, P, Prieto-Arranz, J, Murata, K L, Shugarov, S, Kubota, Y, Otsuki, C, Shionoya, A, Nishiumi, T, Nishide, A, Fukagawa, M, Onodera, K, Villanueva, S, Street, R A, Tsapras, Y, Hundertmark, M, Kuzuhara, M, Fujita, M, Beichman, C, J -P Beaulieu, Alonso, R, D E Reichart N Kawai, Tamura, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the analysis of additional multiband photometry and spectroscopy and new adaptive optics (AO) imaging of the nearby planetary microlensing event TCP J05074264+2447555 (Kojima-1), which was discovered toward the Galactic anticenter in 2017 (Nucita et al.). We confirm the planetary nature of the light-curve anomaly around the peak while finding no additional planetary feature in this event. We also confirm the presence of apparent blending flux and the absence of significant parallax signal reported in the literature. The AO image reveals no contaminating sources, making it most likely that the blending flux comes from the lens star. The measured multiband lens flux, combined with a constraint from the microlensing model, allows us to narrow down the previously unresolved mass and distance of the lens system. We find that the primary lens is a dwarf on the K/M boundary (0.581 \pm 0.033 M_sun) located at 505 \pm 47 pc and the companion (Kojima-1Lb) is a Neptune-mass planet (20.0 \pm 2.0 M_earth) with a semi-major axis of 1.08 ^{+0.62}_{-0.18} au. This orbit is a few times smaller than those of typical microlensing planets and is comparable to the snow-line location at young ages. We calculate that the a priori detection probability of Kojima-1Lb is only \sim 35%, which may imply that Neptunes are common around the snow line, as recently suggested by the transit and radial velocity techniques. The host star is the brightest among the microlensing planetary systems (Ks = 13.7), offering a great opportunity to spectroscopically characterize this system, even with current facilities.
ISSN:2331-8422
DOI:10.48550/arxiv.1909.11802