Loading…

Induction and Decomposition Numbers for RoCK Blocks

This work is concerned with RoCK blocks (also known as Rouquier blocks) of symmetric groups. A RoCK block, bρ,w, with abelian defect group is Morita equivalent to a certain block of a wreath product of symmetric group algebras (Chuang and Kessar). Turner specified an idempotent, e, and conjectured t...

Full description

Saved in:
Bibliographic Details
Published in:Quarterly journal of mathematics 2005-06, Vol.56 (2), p.251-262
Main Author: Paget, Rowena
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-153b9f498b5e49eb1e685fb43a4ce572564185f9c463b58e739d3dcd93f084193
cites
container_end_page 262
container_issue 2
container_start_page 251
container_title Quarterly journal of mathematics
container_volume 56
creator Paget, Rowena
description This work is concerned with RoCK blocks (also known as Rouquier blocks) of symmetric groups. A RoCK block, bρ,w, with abelian defect group is Morita equivalent to a certain block of a wreath product of symmetric group algebras (Chuang and Kessar). Turner specified an idempotent, e, and conjectured that, for arbitrary weight w, ebρ,we should be Morita equivalent to this block of the wreath product. In this work we provide evidence in support of this conjecture. We prove that the decomposition matrices of these two algebras are identical. As a corollary to the proof, we obtain some knowledge of the composition factors of induced and restricted simple modules.
doi_str_mv 10.1093/qmath/hah028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_229900034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>876393891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-153b9f498b5e49eb1e685fb43a4ce572564185f9c463b58e739d3dcd93f084193</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd3_oDitXVJT5ImlzqdGw4Fvxi7CWmasm5rsyUt6L-3ruLVCy8P5_A-CF0SfEOwhNG-0s1qtNIrnIgjNCCU0xgETY_RAGOAmHHMT9FZCGuMCaciHSCY1XlrmtLVka7z6N4aV-1cKA_Nc1tl1oeocD56deOn6G7rzCaco5NCb4O9-Msh-pg8vI-n8fzlcTa-nccGMG5iwiCTBZUiY5ZKmxHLBSsyCpoay9KEcUq6QhrKIWPCpiBzyE0uocCCEglDdNXf3Xm3b21o1Nq1vu5eqiSREnebaAdd95DxLgRvC7XzZaX9tyJY_VpRByuqt9LhcY-XobFf_6z2G8VTSJmaLpZKfE7elguKVQI_PaRkZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229900034</pqid></control><display><type>article</type><title>Induction and Decomposition Numbers for RoCK Blocks</title><source>Oxford Journals Online</source><creator>Paget, Rowena</creator><creatorcontrib>Paget, Rowena</creatorcontrib><description>This work is concerned with RoCK blocks (also known as Rouquier blocks) of symmetric groups. A RoCK block, bρ,w, with abelian defect group is Morita equivalent to a certain block of a wreath product of symmetric group algebras (Chuang and Kessar). Turner specified an idempotent, e, and conjectured that, for arbitrary weight w, ebρ,we should be Morita equivalent to this block of the wreath product. In this work we provide evidence in support of this conjecture. We prove that the decomposition matrices of these two algebras are identical. As a corollary to the proof, we obtain some knowledge of the composition factors of induced and restricted simple modules.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/hah028</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><ispartof>Quarterly journal of mathematics, 2005-06, Vol.56 (2), p.251-262</ispartof><rights>Copyright Oxford University Press(England) Jun 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-153b9f498b5e49eb1e685fb43a4ce572564185f9c463b58e739d3dcd93f084193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Paget, Rowena</creatorcontrib><title>Induction and Decomposition Numbers for RoCK Blocks</title><title>Quarterly journal of mathematics</title><addtitle>Q J Math</addtitle><description>This work is concerned with RoCK blocks (also known as Rouquier blocks) of symmetric groups. A RoCK block, bρ,w, with abelian defect group is Morita equivalent to a certain block of a wreath product of symmetric group algebras (Chuang and Kessar). Turner specified an idempotent, e, and conjectured that, for arbitrary weight w, ebρ,we should be Morita equivalent to this block of the wreath product. In this work we provide evidence in support of this conjecture. We prove that the decomposition matrices of these two algebras are identical. As a corollary to the proof, we obtain some knowledge of the composition factors of induced and restricted simple modules.</description><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKd3_oDitXVJT5ImlzqdGw4Fvxi7CWmasm5rsyUt6L-3ruLVCy8P5_A-CF0SfEOwhNG-0s1qtNIrnIgjNCCU0xgETY_RAGOAmHHMT9FZCGuMCaciHSCY1XlrmtLVka7z6N4aV-1cKA_Nc1tl1oeocD56deOn6G7rzCaco5NCb4O9-Msh-pg8vI-n8fzlcTa-nccGMG5iwiCTBZUiY5ZKmxHLBSsyCpoay9KEcUq6QhrKIWPCpiBzyE0uocCCEglDdNXf3Xm3b21o1Nq1vu5eqiSREnebaAdd95DxLgRvC7XzZaX9tyJY_VpRByuqt9LhcY-XobFf_6z2G8VTSJmaLpZKfE7elguKVQI_PaRkZw</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Paget, Rowena</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20050601</creationdate><title>Induction and Decomposition Numbers for RoCK Blocks</title><author>Paget, Rowena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-153b9f498b5e49eb1e685fb43a4ce572564185f9c463b58e739d3dcd93f084193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paget, Rowena</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paget, Rowena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction and Decomposition Numbers for RoCK Blocks</atitle><jtitle>Quarterly journal of mathematics</jtitle><addtitle>Q J Math</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>56</volume><issue>2</issue><spage>251</spage><epage>262</epage><pages>251-262</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>This work is concerned with RoCK blocks (also known as Rouquier blocks) of symmetric groups. A RoCK block, bρ,w, with abelian defect group is Morita equivalent to a certain block of a wreath product of symmetric group algebras (Chuang and Kessar). Turner specified an idempotent, e, and conjectured that, for arbitrary weight w, ebρ,we should be Morita equivalent to this block of the wreath product. In this work we provide evidence in support of this conjecture. We prove that the decomposition matrices of these two algebras are identical. As a corollary to the proof, we obtain some knowledge of the composition factors of induced and restricted simple modules.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/qmath/hah028</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-5606
ispartof Quarterly journal of mathematics, 2005-06, Vol.56 (2), p.251-262
issn 0033-5606
1464-3847
language eng
recordid cdi_proquest_journals_229900034
source Oxford Journals Online
title Induction and Decomposition Numbers for RoCK Blocks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20and%20Decomposition%20Numbers%20for%20RoCK%20Blocks&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Paget,%20Rowena&rft.date=2005-06-01&rft.volume=56&rft.issue=2&rft.spage=251&rft.epage=262&rft.pages=251-262&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/hah028&rft_dat=%3Cproquest_cross%3E876393891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-153b9f498b5e49eb1e685fb43a4ce572564185f9c463b58e739d3dcd93f084193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=229900034&rft_id=info:pmid/&rfr_iscdi=true