Loading…

A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture

Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2018-07, Vol.3 (3), p.2109-2115
Main Authors: Anopas, Dollaporn, Sing Yian Chew, Junquan Lin, Seng Kwee Wee, Tow Peh Er, Wei Tech Ang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603
cites cdi_FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603
container_end_page 2115
container_issue 3
container_start_page 2109
container_title IEEE robotics and automation letters
container_volume 3
creator Anopas, Dollaporn
Sing Yian Chew
Junquan Lin
Seng Kwee Wee
Tow Peh Er
Wei Tech Ang
description Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley rat with complete thoracic SCI. This system consists of a body weight support system, five-bar linkage for driving the rat's ankles, and treadmill for training motor functions. This system is tested in a rat which is totally transected at T9 and T10 of the spinal cord. A nanofiber scaffold is implanted in a gap between T9 and T10 of the spinal cord in a spinalized rat for stimulating axonal regrowth. The position errors are quantified under five static load conditions (no load, 10, 30, 60, and 100 g) and dynamic load condition. Average root mean square (RMS) position errors in x - and y- axes of the manipulator are 2.1% and 5.3%, respectively. According to a preliminary test, this system can provide the constant force to support the body weight and can drive the rat's hindlimbs without inducing anxiety or irritation. From our experiment, average RMS position errors in x - and y- axes of the manipulator are 10% and 11.7%, respectively. The contribution of this research is the developmental rehabilitation robotic system for a rat with complete thoracic SCI in quadruped posture which can provide more natural walking posture. The scope of this letter is a developmental rehabilitation robotic system.
doi_str_mv 10.1109/LRA.2018.2809596
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2299370628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8302443</ieee_id><sourcerecordid>2299370628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhosoOObugpeA584vSds0xzF_DQZqnXgMaZqyjLapSTrYf2_Hhnj6vsPzvrw8UXSLYY4x8Id1sZgTwPmc5MBTnl1EE0IZiynLsst__3U0834HADgljPJ0Eu0X6FHvdWP7VndBNqjQW1maxgQZjO1QYUsbjEKfBx90i2rrkESFDOjbhC1a2rZvdNBos7VOqiPXm25sWVpXoVW3G9wBmQ59DLJyQ68r9G59GJy-ia5q2Xg9O99p9PX8tFm-xuu3l9VysY4V4TjESZpUFVYZA2A0z3JJQVLN1DidUCqVVJXiOVMpYEgoKZOKcSVLWqdJWdIM6DS6P_X2zv4M2gexs4MbF3pBCOeUQUbykYITpZz13ula9M600h0EBnEULEbB4ihYnAWPkbtTxGit__CcAkkSSn8BF3R2rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299370628</pqid></control><display><type>article</type><title>A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Anopas, Dollaporn ; Sing Yian Chew ; Junquan Lin ; Seng Kwee Wee ; Tow Peh Er ; Wei Tech Ang</creator><creatorcontrib>Anopas, Dollaporn ; Sing Yian Chew ; Junquan Lin ; Seng Kwee Wee ; Tow Peh Er ; Wei Tech Ang</creatorcontrib><description>Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley rat with complete thoracic SCI. This system consists of a body weight support system, five-bar linkage for driving the rat's ankles, and treadmill for training motor functions. This system is tested in a rat which is totally transected at T9 and T10 of the spinal cord. A nanofiber scaffold is implanted in a gap between T9 and T10 of the spinal cord in a spinalized rat for stimulating axonal regrowth. The position errors are quantified under five static load conditions (no load, 10, 30, 60, and 100 g) and dynamic load condition. Average root mean square (RMS) position errors in x - and y- axes of the manipulator are 2.1% and 5.3%, respectively. According to a preliminary test, this system can provide the constant force to support the body weight and can drive the rat's hindlimbs without inducing anxiety or irritation. From our experiment, average RMS position errors in x - and y- axes of the manipulator are 10% and 11.7%, respectively. The contribution of this research is the developmental rehabilitation robotic system for a rat with complete thoracic SCI in quadruped posture which can provide more natural walking posture. The scope of this letter is a developmental rehabilitation robotic system.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2018.2809596</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anxiety ; Axes (reference lines) ; Body weight ; Combinatorial analysis ; Couplings ; Dynamic loads ; Force ; Irritation ; kinematics ; Manipulators ; Mathematical model ; Nanofibers ; Position errors ; Posture ; Rats ; Regeneration ; Rehabilitation ; Rehabilitation robotics ; Robotics ; Robots ; Spinal cord ; Spinal cord injuries ; Springs ; Static loads ; Support systems ; Trajectory ; Treadmills</subject><ispartof>IEEE robotics and automation letters, 2018-07, Vol.3 (3), p.2109-2115</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603</citedby><cites>FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603</cites><orcidid>0000-0002-0799-0583 ; 0000-0001-8134-9885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8302443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Anopas, Dollaporn</creatorcontrib><creatorcontrib>Sing Yian Chew</creatorcontrib><creatorcontrib>Junquan Lin</creatorcontrib><creatorcontrib>Seng Kwee Wee</creatorcontrib><creatorcontrib>Tow Peh Er</creatorcontrib><creatorcontrib>Wei Tech Ang</creatorcontrib><title>A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley rat with complete thoracic SCI. This system consists of a body weight support system, five-bar linkage for driving the rat's ankles, and treadmill for training motor functions. This system is tested in a rat which is totally transected at T9 and T10 of the spinal cord. A nanofiber scaffold is implanted in a gap between T9 and T10 of the spinal cord in a spinalized rat for stimulating axonal regrowth. The position errors are quantified under five static load conditions (no load, 10, 30, 60, and 100 g) and dynamic load condition. Average root mean square (RMS) position errors in x - and y- axes of the manipulator are 2.1% and 5.3%, respectively. According to a preliminary test, this system can provide the constant force to support the body weight and can drive the rat's hindlimbs without inducing anxiety or irritation. From our experiment, average RMS position errors in x - and y- axes of the manipulator are 10% and 11.7%, respectively. The contribution of this research is the developmental rehabilitation robotic system for a rat with complete thoracic SCI in quadruped posture which can provide more natural walking posture. The scope of this letter is a developmental rehabilitation robotic system.</description><subject>Anxiety</subject><subject>Axes (reference lines)</subject><subject>Body weight</subject><subject>Combinatorial analysis</subject><subject>Couplings</subject><subject>Dynamic loads</subject><subject>Force</subject><subject>Irritation</subject><subject>kinematics</subject><subject>Manipulators</subject><subject>Mathematical model</subject><subject>Nanofibers</subject><subject>Position errors</subject><subject>Posture</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Rehabilitation</subject><subject>Rehabilitation robotics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Spinal cord</subject><subject>Spinal cord injuries</subject><subject>Springs</subject><subject>Static loads</subject><subject>Support systems</subject><subject>Trajectory</subject><subject>Treadmills</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAYhosoOObugpeA584vSds0xzF_DQZqnXgMaZqyjLapSTrYf2_Hhnj6vsPzvrw8UXSLYY4x8Id1sZgTwPmc5MBTnl1EE0IZiynLsst__3U0834HADgljPJ0Eu0X6FHvdWP7VndBNqjQW1maxgQZjO1QYUsbjEKfBx90i2rrkESFDOjbhC1a2rZvdNBos7VOqiPXm25sWVpXoVW3G9wBmQ59DLJyQ68r9G59GJy-ia5q2Xg9O99p9PX8tFm-xuu3l9VysY4V4TjESZpUFVYZA2A0z3JJQVLN1DidUCqVVJXiOVMpYEgoKZOKcSVLWqdJWdIM6DS6P_X2zv4M2gexs4MbF3pBCOeUQUbykYITpZz13ula9M600h0EBnEULEbB4ihYnAWPkbtTxGit__CcAkkSSn8BF3R2rA</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Anopas, Dollaporn</creator><creator>Sing Yian Chew</creator><creator>Junquan Lin</creator><creator>Seng Kwee Wee</creator><creator>Tow Peh Er</creator><creator>Wei Tech Ang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0799-0583</orcidid><orcidid>https://orcid.org/0000-0001-8134-9885</orcidid></search><sort><creationdate>20180701</creationdate><title>A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture</title><author>Anopas, Dollaporn ; Sing Yian Chew ; Junquan Lin ; Seng Kwee Wee ; Tow Peh Er ; Wei Tech Ang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anxiety</topic><topic>Axes (reference lines)</topic><topic>Body weight</topic><topic>Combinatorial analysis</topic><topic>Couplings</topic><topic>Dynamic loads</topic><topic>Force</topic><topic>Irritation</topic><topic>kinematics</topic><topic>Manipulators</topic><topic>Mathematical model</topic><topic>Nanofibers</topic><topic>Position errors</topic><topic>Posture</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Rehabilitation</topic><topic>Rehabilitation robotics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Spinal cord</topic><topic>Spinal cord injuries</topic><topic>Springs</topic><topic>Static loads</topic><topic>Support systems</topic><topic>Trajectory</topic><topic>Treadmills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anopas, Dollaporn</creatorcontrib><creatorcontrib>Sing Yian Chew</creatorcontrib><creatorcontrib>Junquan Lin</creatorcontrib><creatorcontrib>Seng Kwee Wee</creatorcontrib><creatorcontrib>Tow Peh Er</creatorcontrib><creatorcontrib>Wei Tech Ang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anopas, Dollaporn</au><au>Sing Yian Chew</au><au>Junquan Lin</au><au>Seng Kwee Wee</au><au>Tow Peh Er</au><au>Wei Tech Ang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>2109</spage><epage>2115</epage><pages>2109-2115</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley rat with complete thoracic SCI. This system consists of a body weight support system, five-bar linkage for driving the rat's ankles, and treadmill for training motor functions. This system is tested in a rat which is totally transected at T9 and T10 of the spinal cord. A nanofiber scaffold is implanted in a gap between T9 and T10 of the spinal cord in a spinalized rat for stimulating axonal regrowth. The position errors are quantified under five static load conditions (no load, 10, 30, 60, and 100 g) and dynamic load condition. Average root mean square (RMS) position errors in x - and y- axes of the manipulator are 2.1% and 5.3%, respectively. According to a preliminary test, this system can provide the constant force to support the body weight and can drive the rat's hindlimbs without inducing anxiety or irritation. From our experiment, average RMS position errors in x - and y- axes of the manipulator are 10% and 11.7%, respectively. The contribution of this research is the developmental rehabilitation robotic system for a rat with complete thoracic SCI in quadruped posture which can provide more natural walking posture. The scope of this letter is a developmental rehabilitation robotic system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2018.2809596</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0799-0583</orcidid><orcidid>https://orcid.org/0000-0001-8134-9885</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2018-07, Vol.3 (3), p.2109-2115
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2299370628
source IEEE Electronic Library (IEL) Journals
subjects Anxiety
Axes (reference lines)
Body weight
Combinatorial analysis
Couplings
Dynamic loads
Force
Irritation
kinematics
Manipulators
Mathematical model
Nanofibers
Position errors
Posture
Rats
Regeneration
Rehabilitation
Rehabilitation robotics
Robotics
Robots
Spinal cord
Spinal cord injuries
Springs
Static loads
Support systems
Trajectory
Treadmills
title A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Developmental%20Rehabilitation%20Robotic%20System%20for%20a%20Rat%20With%20Complete%20Thoracic%20Spinal%20Cord%20Injury%20in%20Quadruped%20Posture&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Anopas,%20Dollaporn&rft.date=2018-07-01&rft.volume=3&rft.issue=3&rft.spage=2109&rft.epage=2115&rft.pages=2109-2115&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2018.2809596&rft_dat=%3Cproquest_ieee_%3E2299370628%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299370628&rft_id=info:pmid/&rft_ieee_id=8302443&rfr_iscdi=true