Loading…
A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture
Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley...
Saved in:
Published in: | IEEE robotics and automation letters 2018-07, Vol.3 (3), p.2109-2115 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603 |
container_end_page | 2115 |
container_issue | 3 |
container_start_page | 2109 |
container_title | IEEE robotics and automation letters |
container_volume | 3 |
creator | Anopas, Dollaporn Sing Yian Chew Junquan Lin Seng Kwee Wee Tow Peh Er Wei Tech Ang |
description | Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley rat with complete thoracic SCI. This system consists of a body weight support system, five-bar linkage for driving the rat's ankles, and treadmill for training motor functions. This system is tested in a rat which is totally transected at T9 and T10 of the spinal cord. A nanofiber scaffold is implanted in a gap between T9 and T10 of the spinal cord in a spinalized rat for stimulating axonal regrowth. The position errors are quantified under five static load conditions (no load, 10, 30, 60, and 100 g) and dynamic load condition. Average root mean square (RMS) position errors in x - and y- axes of the manipulator are 2.1% and 5.3%, respectively. According to a preliminary test, this system can provide the constant force to support the body weight and can drive the rat's hindlimbs without inducing anxiety or irritation. From our experiment, average RMS position errors in x - and y- axes of the manipulator are 10% and 11.7%, respectively. The contribution of this research is the developmental rehabilitation robotic system for a rat with complete thoracic SCI in quadruped posture which can provide more natural walking posture. The scope of this letter is a developmental rehabilitation robotic system. |
doi_str_mv | 10.1109/LRA.2018.2809596 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2299370628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8302443</ieee_id><sourcerecordid>2299370628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhosoOObugpeA584vSds0xzF_DQZqnXgMaZqyjLapSTrYf2_Hhnj6vsPzvrw8UXSLYY4x8Id1sZgTwPmc5MBTnl1EE0IZiynLsst__3U0834HADgljPJ0Eu0X6FHvdWP7VndBNqjQW1maxgQZjO1QYUsbjEKfBx90i2rrkESFDOjbhC1a2rZvdNBos7VOqiPXm25sWVpXoVW3G9wBmQ59DLJyQ68r9G59GJy-ia5q2Xg9O99p9PX8tFm-xuu3l9VysY4V4TjESZpUFVYZA2A0z3JJQVLN1DidUCqVVJXiOVMpYEgoKZOKcSVLWqdJWdIM6DS6P_X2zv4M2gexs4MbF3pBCOeUQUbykYITpZz13ula9M600h0EBnEULEbB4ihYnAWPkbtTxGit__CcAkkSSn8BF3R2rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299370628</pqid></control><display><type>article</type><title>A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Anopas, Dollaporn ; Sing Yian Chew ; Junquan Lin ; Seng Kwee Wee ; Tow Peh Er ; Wei Tech Ang</creator><creatorcontrib>Anopas, Dollaporn ; Sing Yian Chew ; Junquan Lin ; Seng Kwee Wee ; Tow Peh Er ; Wei Tech Ang</creatorcontrib><description>Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley rat with complete thoracic SCI. This system consists of a body weight support system, five-bar linkage for driving the rat's ankles, and treadmill for training motor functions. This system is tested in a rat which is totally transected at T9 and T10 of the spinal cord. A nanofiber scaffold is implanted in a gap between T9 and T10 of the spinal cord in a spinalized rat for stimulating axonal regrowth. The position errors are quantified under five static load conditions (no load, 10, 30, 60, and 100 g) and dynamic load condition. Average root mean square (RMS) position errors in x - and y- axes of the manipulator are 2.1% and 5.3%, respectively. According to a preliminary test, this system can provide the constant force to support the body weight and can drive the rat's hindlimbs without inducing anxiety or irritation. From our experiment, average RMS position errors in x - and y- axes of the manipulator are 10% and 11.7%, respectively. The contribution of this research is the developmental rehabilitation robotic system for a rat with complete thoracic SCI in quadruped posture which can provide more natural walking posture. The scope of this letter is a developmental rehabilitation robotic system.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2018.2809596</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anxiety ; Axes (reference lines) ; Body weight ; Combinatorial analysis ; Couplings ; Dynamic loads ; Force ; Irritation ; kinematics ; Manipulators ; Mathematical model ; Nanofibers ; Position errors ; Posture ; Rats ; Regeneration ; Rehabilitation ; Rehabilitation robotics ; Robotics ; Robots ; Spinal cord ; Spinal cord injuries ; Springs ; Static loads ; Support systems ; Trajectory ; Treadmills</subject><ispartof>IEEE robotics and automation letters, 2018-07, Vol.3 (3), p.2109-2115</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603</citedby><cites>FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603</cites><orcidid>0000-0002-0799-0583 ; 0000-0001-8134-9885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8302443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Anopas, Dollaporn</creatorcontrib><creatorcontrib>Sing Yian Chew</creatorcontrib><creatorcontrib>Junquan Lin</creatorcontrib><creatorcontrib>Seng Kwee Wee</creatorcontrib><creatorcontrib>Tow Peh Er</creatorcontrib><creatorcontrib>Wei Tech Ang</creatorcontrib><title>A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley rat with complete thoracic SCI. This system consists of a body weight support system, five-bar linkage for driving the rat's ankles, and treadmill for training motor functions. This system is tested in a rat which is totally transected at T9 and T10 of the spinal cord. A nanofiber scaffold is implanted in a gap between T9 and T10 of the spinal cord in a spinalized rat for stimulating axonal regrowth. The position errors are quantified under five static load conditions (no load, 10, 30, 60, and 100 g) and dynamic load condition. Average root mean square (RMS) position errors in x - and y- axes of the manipulator are 2.1% and 5.3%, respectively. According to a preliminary test, this system can provide the constant force to support the body weight and can drive the rat's hindlimbs without inducing anxiety or irritation. From our experiment, average RMS position errors in x - and y- axes of the manipulator are 10% and 11.7%, respectively. The contribution of this research is the developmental rehabilitation robotic system for a rat with complete thoracic SCI in quadruped posture which can provide more natural walking posture. The scope of this letter is a developmental rehabilitation robotic system.</description><subject>Anxiety</subject><subject>Axes (reference lines)</subject><subject>Body weight</subject><subject>Combinatorial analysis</subject><subject>Couplings</subject><subject>Dynamic loads</subject><subject>Force</subject><subject>Irritation</subject><subject>kinematics</subject><subject>Manipulators</subject><subject>Mathematical model</subject><subject>Nanofibers</subject><subject>Position errors</subject><subject>Posture</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Rehabilitation</subject><subject>Rehabilitation robotics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Spinal cord</subject><subject>Spinal cord injuries</subject><subject>Springs</subject><subject>Static loads</subject><subject>Support systems</subject><subject>Trajectory</subject><subject>Treadmills</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAYhosoOObugpeA584vSds0xzF_DQZqnXgMaZqyjLapSTrYf2_Hhnj6vsPzvrw8UXSLYY4x8Id1sZgTwPmc5MBTnl1EE0IZiynLsst__3U0834HADgljPJ0Eu0X6FHvdWP7VndBNqjQW1maxgQZjO1QYUsbjEKfBx90i2rrkESFDOjbhC1a2rZvdNBos7VOqiPXm25sWVpXoVW3G9wBmQ59DLJyQ68r9G59GJy-ia5q2Xg9O99p9PX8tFm-xuu3l9VysY4V4TjESZpUFVYZA2A0z3JJQVLN1DidUCqVVJXiOVMpYEgoKZOKcSVLWqdJWdIM6DS6P_X2zv4M2gexs4MbF3pBCOeUQUbykYITpZz13ula9M600h0EBnEULEbB4ihYnAWPkbtTxGit__CcAkkSSn8BF3R2rA</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Anopas, Dollaporn</creator><creator>Sing Yian Chew</creator><creator>Junquan Lin</creator><creator>Seng Kwee Wee</creator><creator>Tow Peh Er</creator><creator>Wei Tech Ang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0799-0583</orcidid><orcidid>https://orcid.org/0000-0001-8134-9885</orcidid></search><sort><creationdate>20180701</creationdate><title>A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture</title><author>Anopas, Dollaporn ; Sing Yian Chew ; Junquan Lin ; Seng Kwee Wee ; Tow Peh Er ; Wei Tech Ang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anxiety</topic><topic>Axes (reference lines)</topic><topic>Body weight</topic><topic>Combinatorial analysis</topic><topic>Couplings</topic><topic>Dynamic loads</topic><topic>Force</topic><topic>Irritation</topic><topic>kinematics</topic><topic>Manipulators</topic><topic>Mathematical model</topic><topic>Nanofibers</topic><topic>Position errors</topic><topic>Posture</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Rehabilitation</topic><topic>Rehabilitation robotics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Spinal cord</topic><topic>Spinal cord injuries</topic><topic>Springs</topic><topic>Static loads</topic><topic>Support systems</topic><topic>Trajectory</topic><topic>Treadmills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anopas, Dollaporn</creatorcontrib><creatorcontrib>Sing Yian Chew</creatorcontrib><creatorcontrib>Junquan Lin</creatorcontrib><creatorcontrib>Seng Kwee Wee</creatorcontrib><creatorcontrib>Tow Peh Er</creatorcontrib><creatorcontrib>Wei Tech Ang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anopas, Dollaporn</au><au>Sing Yian Chew</au><au>Junquan Lin</au><au>Seng Kwee Wee</au><au>Tow Peh Er</au><au>Wei Tech Ang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>2109</spage><epage>2115</epage><pages>2109-2115</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Spinal cord injury (SCI) leads to the impairment of impulse conduction and subsequently to an abnormality of limbs function. To regain locomotor performance in SCI cases, we establish a robust combinatorial regenerative and rehabilitative approach to enhance axonal regeneration in the Sprague-Dawley rat with complete thoracic SCI. This system consists of a body weight support system, five-bar linkage for driving the rat's ankles, and treadmill for training motor functions. This system is tested in a rat which is totally transected at T9 and T10 of the spinal cord. A nanofiber scaffold is implanted in a gap between T9 and T10 of the spinal cord in a spinalized rat for stimulating axonal regrowth. The position errors are quantified under five static load conditions (no load, 10, 30, 60, and 100 g) and dynamic load condition. Average root mean square (RMS) position errors in x - and y- axes of the manipulator are 2.1% and 5.3%, respectively. According to a preliminary test, this system can provide the constant force to support the body weight and can drive the rat's hindlimbs without inducing anxiety or irritation. From our experiment, average RMS position errors in x - and y- axes of the manipulator are 10% and 11.7%, respectively. The contribution of this research is the developmental rehabilitation robotic system for a rat with complete thoracic SCI in quadruped posture which can provide more natural walking posture. The scope of this letter is a developmental rehabilitation robotic system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2018.2809596</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0799-0583</orcidid><orcidid>https://orcid.org/0000-0001-8134-9885</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2018-07, Vol.3 (3), p.2109-2115 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2299370628 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Anxiety Axes (reference lines) Body weight Combinatorial analysis Couplings Dynamic loads Force Irritation kinematics Manipulators Mathematical model Nanofibers Position errors Posture Rats Regeneration Rehabilitation Rehabilitation robotics Robotics Robots Spinal cord Spinal cord injuries Springs Static loads Support systems Trajectory Treadmills |
title | A Developmental Rehabilitation Robotic System for a Rat With Complete Thoracic Spinal Cord Injury in Quadruped Posture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Developmental%20Rehabilitation%20Robotic%20System%20for%20a%20Rat%20With%20Complete%20Thoracic%20Spinal%20Cord%20Injury%20in%20Quadruped%20Posture&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Anopas,%20Dollaporn&rft.date=2018-07-01&rft.volume=3&rft.issue=3&rft.spage=2109&rft.epage=2115&rft.pages=2109-2115&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2018.2809596&rft_dat=%3Cproquest_ieee_%3E2299370628%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-454dd1c670073868a30a3e7c395233acacdc987c5010432b4d79cab3f54bb3603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299370628&rft_id=info:pmid/&rft_ieee_id=8302443&rfr_iscdi=true |