Loading…

Covering a Robot Fingertip With uSkin: A Soft Electronic Skin With Distributed 3-Axis Force Sensitive Elements for Robot Hands

Distributed tactile sensing is crucial to perform stable, subtle, and precise manipulation so that a robot can recognize and handle objects properly. However, currently existing skin sensors still have common problems such as complex and expensive production or are difficult to integrate into robot...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2018-01, Vol.3 (1), p.124-131
Main Authors: Tomo, Tito Pradhono, Schmitz, Alexander, Wong, Wai Keat, Kristanto, Harris, Somlor, Sophon, Jinsun Hwang, Jamone, Lorenzo, Sugano, Shigeki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Distributed tactile sensing is crucial to perform stable, subtle, and precise manipulation so that a robot can recognize and handle objects properly. However, currently existing skin sensors still have common problems such as complex and expensive production or are difficult to integrate into robot hands. In particular, a practical distributed soft skin sensor system that can cover various parts of the robot hand, measure force in 3-axis, with a subcentimeter spatial density, and digital output at the same time does not exist yet. This letter discusses uSkin, a soft, distributed, 3-axis force sensor for robot hands and presents its implementation for multicurved fingertips. The sensor is low-cost, easy to manufacture, and can measure normal and shear forces. The experimental results revealed that this sensor has 10% hysteresis for perpendicular force with a maximum range of 6 N. The Signal to Noise Ratio (SNR) value of 54 dB for 0.4 N load was achieved, which constitutes the state of the art for this kind of sensors. Evaluation experiments also showed that the distributed 3-axis load cells could produce vectors that represent the shape of objects. This opens the possibility that the sensor can be used for classifying different shapes. Furthermore, the fingertip sensor was installed on the Allegro hand and the changing force measurements when the robot is grasping an object are presented.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2017.2734965