Loading…

A novel minimum weight formulation of topology optimization implemented with reanalysis approach

Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2019-11, Vol.120 (5), p.567-579
Main Authors: Long, Kai, Gu, Chunlu, Wang, Xuan, Liu, Jie, Du, Yixian, Chen, Zhuo, Saeed, Nouman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413
cites cdi_FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413
container_end_page 579
container_issue 5
container_start_page 567
container_title International journal for numerical methods in engineering
container_volume 120
creator Long, Kai
Gu, Chunlu
Wang, Xuan
Liu, Jie
Du, Yixian
Chen, Zhuo
Saeed, Nouman
description Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.
doi_str_mv 10.1002/nme.6148
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2299410063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299410063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJGTtuYi-rqjykAhtYGzdxWldxHOyEKnw9LmHLaqS5R3dGB6FrAjMCQO8aq2cZYfwETQiIPAEK-SmaxEgkc8HJOboIYQ9AyBzSCfpY4MZ96Rpb0xjbW3zQZrvrcOW87WvVGddgV-HOta522wG7tjPWfI-BsW2trW46XeKD6XbYa9WoeggmYNW23qlid4nOKlUHffU3p-j9fvW2fEzWrw9Py8U6KahIeaLYnImCAWSUcZZxAWyjBS-gKEuREq7iolQ51bmGilUbTktKcyYITausZCSdopuxN5797HXo5N71Pn4TJKVCsCgnSyN1O1KFdyF4XcnWG6v8IAnIoz8Z_cmjv4gmI3owtR7-5eTL8-qX_wG2k3H3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299410063</pqid></control><display><type>article</type><title>A novel minimum weight formulation of topology optimization implemented with reanalysis approach</title><source>Wiley</source><creator>Long, Kai ; Gu, Chunlu ; Wang, Xuan ; Liu, Jie ; Du, Yixian ; Chen, Zhuo ; Saeed, Nouman</creator><creatorcontrib>Long, Kai ; Gu, Chunlu ; Wang, Xuan ; Liu, Jie ; Du, Yixian ; Chen, Zhuo ; Saeed, Nouman</creatorcontrib><description>Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6148</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>approximate reanalysis ; Dependence ; Design optimization ; Hessian matrices ; Matrix methods ; Minimum weight design ; multigrid preconditioned conjugate gradients ; Optimization ; preconditioned conjugate gradient ; Quadratic programming ; sequential quadratic programming ; Topology optimization ; Upper bounds ; Weight reduction</subject><ispartof>International journal for numerical methods in engineering, 2019-11, Vol.120 (5), p.567-579</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413</citedby><cites>FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413</cites><orcidid>0000-0003-2485-7095 ; 0000-0001-7921-0497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Long, Kai</creatorcontrib><creatorcontrib>Gu, Chunlu</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Du, Yixian</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Saeed, Nouman</creatorcontrib><title>A novel minimum weight formulation of topology optimization implemented with reanalysis approach</title><title>International journal for numerical methods in engineering</title><description>Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.</description><subject>approximate reanalysis</subject><subject>Dependence</subject><subject>Design optimization</subject><subject>Hessian matrices</subject><subject>Matrix methods</subject><subject>Minimum weight design</subject><subject>multigrid preconditioned conjugate gradients</subject><subject>Optimization</subject><subject>preconditioned conjugate gradient</subject><subject>Quadratic programming</subject><subject>sequential quadratic programming</subject><subject>Topology optimization</subject><subject>Upper bounds</subject><subject>Weight reduction</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJGTtuYi-rqjykAhtYGzdxWldxHOyEKnw9LmHLaqS5R3dGB6FrAjMCQO8aq2cZYfwETQiIPAEK-SmaxEgkc8HJOboIYQ9AyBzSCfpY4MZ96Rpb0xjbW3zQZrvrcOW87WvVGddgV-HOta522wG7tjPWfI-BsW2trW46XeKD6XbYa9WoeggmYNW23qlid4nOKlUHffU3p-j9fvW2fEzWrw9Py8U6KahIeaLYnImCAWSUcZZxAWyjBS-gKEuREq7iolQ51bmGilUbTktKcyYITausZCSdopuxN5797HXo5N71Pn4TJKVCsCgnSyN1O1KFdyF4XcnWG6v8IAnIoz8Z_cmjv4gmI3owtR7-5eTL8-qX_wG2k3H3</recordid><startdate>20191102</startdate><enddate>20191102</enddate><creator>Long, Kai</creator><creator>Gu, Chunlu</creator><creator>Wang, Xuan</creator><creator>Liu, Jie</creator><creator>Du, Yixian</creator><creator>Chen, Zhuo</creator><creator>Saeed, Nouman</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2485-7095</orcidid><orcidid>https://orcid.org/0000-0001-7921-0497</orcidid></search><sort><creationdate>20191102</creationdate><title>A novel minimum weight formulation of topology optimization implemented with reanalysis approach</title><author>Long, Kai ; Gu, Chunlu ; Wang, Xuan ; Liu, Jie ; Du, Yixian ; Chen, Zhuo ; Saeed, Nouman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>approximate reanalysis</topic><topic>Dependence</topic><topic>Design optimization</topic><topic>Hessian matrices</topic><topic>Matrix methods</topic><topic>Minimum weight design</topic><topic>multigrid preconditioned conjugate gradients</topic><topic>Optimization</topic><topic>preconditioned conjugate gradient</topic><topic>Quadratic programming</topic><topic>sequential quadratic programming</topic><topic>Topology optimization</topic><topic>Upper bounds</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Kai</creatorcontrib><creatorcontrib>Gu, Chunlu</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Du, Yixian</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Saeed, Nouman</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Kai</au><au>Gu, Chunlu</au><au>Wang, Xuan</au><au>Liu, Jie</au><au>Du, Yixian</au><au>Chen, Zhuo</au><au>Saeed, Nouman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel minimum weight formulation of topology optimization implemented with reanalysis approach</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2019-11-02</date><risdate>2019</risdate><volume>120</volume><issue>5</issue><spage>567</spage><epage>579</epage><pages>567-579</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.6148</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2485-7095</orcidid><orcidid>https://orcid.org/0000-0001-7921-0497</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2019-11, Vol.120 (5), p.567-579
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2299410063
source Wiley
subjects approximate reanalysis
Dependence
Design optimization
Hessian matrices
Matrix methods
Minimum weight design
multigrid preconditioned conjugate gradients
Optimization
preconditioned conjugate gradient
Quadratic programming
sequential quadratic programming
Topology optimization
Upper bounds
Weight reduction
title A novel minimum weight formulation of topology optimization implemented with reanalysis approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20minimum%20weight%20formulation%20of%20topology%20optimization%20implemented%20with%20reanalysis%20approach&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Long,%20Kai&rft.date=2019-11-02&rft.volume=120&rft.issue=5&rft.spage=567&rft.epage=579&rft.pages=567-579&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6148&rft_dat=%3Cproquest_cross%3E2299410063%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299410063&rft_id=info:pmid/&rfr_iscdi=true