Loading…
A novel minimum weight formulation of topology optimization implemented with reanalysis approach
Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point...
Saved in:
Published in: | International journal for numerical methods in engineering 2019-11, Vol.120 (5), p.567-579 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413 |
---|---|
cites | cdi_FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413 |
container_end_page | 579 |
container_issue | 5 |
container_start_page | 567 |
container_title | International journal for numerical methods in engineering |
container_volume | 120 |
creator | Long, Kai Gu, Chunlu Wang, Xuan Liu, Jie Du, Yixian Chen, Zhuo Saeed, Nouman |
description | Summary
In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples. |
doi_str_mv | 10.1002/nme.6148 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2299410063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299410063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJGTtuYi-rqjykAhtYGzdxWldxHOyEKnw9LmHLaqS5R3dGB6FrAjMCQO8aq2cZYfwETQiIPAEK-SmaxEgkc8HJOboIYQ9AyBzSCfpY4MZ96Rpb0xjbW3zQZrvrcOW87WvVGddgV-HOta522wG7tjPWfI-BsW2trW46XeKD6XbYa9WoeggmYNW23qlid4nOKlUHffU3p-j9fvW2fEzWrw9Py8U6KahIeaLYnImCAWSUcZZxAWyjBS-gKEuREq7iolQ51bmGilUbTktKcyYITausZCSdopuxN5797HXo5N71Pn4TJKVCsCgnSyN1O1KFdyF4XcnWG6v8IAnIoz8Z_cmjv4gmI3owtR7-5eTL8-qX_wG2k3H3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299410063</pqid></control><display><type>article</type><title>A novel minimum weight formulation of topology optimization implemented with reanalysis approach</title><source>Wiley</source><creator>Long, Kai ; Gu, Chunlu ; Wang, Xuan ; Liu, Jie ; Du, Yixian ; Chen, Zhuo ; Saeed, Nouman</creator><creatorcontrib>Long, Kai ; Gu, Chunlu ; Wang, Xuan ; Liu, Jie ; Du, Yixian ; Chen, Zhuo ; Saeed, Nouman</creatorcontrib><description>Summary
In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6148</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>approximate reanalysis ; Dependence ; Design optimization ; Hessian matrices ; Matrix methods ; Minimum weight design ; multigrid preconditioned conjugate gradients ; Optimization ; preconditioned conjugate gradient ; Quadratic programming ; sequential quadratic programming ; Topology optimization ; Upper bounds ; Weight reduction</subject><ispartof>International journal for numerical methods in engineering, 2019-11, Vol.120 (5), p.567-579</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413</citedby><cites>FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413</cites><orcidid>0000-0003-2485-7095 ; 0000-0001-7921-0497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Long, Kai</creatorcontrib><creatorcontrib>Gu, Chunlu</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Du, Yixian</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Saeed, Nouman</creatorcontrib><title>A novel minimum weight formulation of topology optimization implemented with reanalysis approach</title><title>International journal for numerical methods in engineering</title><description>Summary
In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.</description><subject>approximate reanalysis</subject><subject>Dependence</subject><subject>Design optimization</subject><subject>Hessian matrices</subject><subject>Matrix methods</subject><subject>Minimum weight design</subject><subject>multigrid preconditioned conjugate gradients</subject><subject>Optimization</subject><subject>preconditioned conjugate gradient</subject><subject>Quadratic programming</subject><subject>sequential quadratic programming</subject><subject>Topology optimization</subject><subject>Upper bounds</subject><subject>Weight reduction</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJGTtuYi-rqjykAhtYGzdxWldxHOyEKnw9LmHLaqS5R3dGB6FrAjMCQO8aq2cZYfwETQiIPAEK-SmaxEgkc8HJOboIYQ9AyBzSCfpY4MZ96Rpb0xjbW3zQZrvrcOW87WvVGddgV-HOta522wG7tjPWfI-BsW2trW46XeKD6XbYa9WoeggmYNW23qlid4nOKlUHffU3p-j9fvW2fEzWrw9Py8U6KahIeaLYnImCAWSUcZZxAWyjBS-gKEuREq7iolQ51bmGilUbTktKcyYITausZCSdopuxN5797HXo5N71Pn4TJKVCsCgnSyN1O1KFdyF4XcnWG6v8IAnIoz8Z_cmjv4gmI3owtR7-5eTL8-qX_wG2k3H3</recordid><startdate>20191102</startdate><enddate>20191102</enddate><creator>Long, Kai</creator><creator>Gu, Chunlu</creator><creator>Wang, Xuan</creator><creator>Liu, Jie</creator><creator>Du, Yixian</creator><creator>Chen, Zhuo</creator><creator>Saeed, Nouman</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2485-7095</orcidid><orcidid>https://orcid.org/0000-0001-7921-0497</orcidid></search><sort><creationdate>20191102</creationdate><title>A novel minimum weight formulation of topology optimization implemented with reanalysis approach</title><author>Long, Kai ; Gu, Chunlu ; Wang, Xuan ; Liu, Jie ; Du, Yixian ; Chen, Zhuo ; Saeed, Nouman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>approximate reanalysis</topic><topic>Dependence</topic><topic>Design optimization</topic><topic>Hessian matrices</topic><topic>Matrix methods</topic><topic>Minimum weight design</topic><topic>multigrid preconditioned conjugate gradients</topic><topic>Optimization</topic><topic>preconditioned conjugate gradient</topic><topic>Quadratic programming</topic><topic>sequential quadratic programming</topic><topic>Topology optimization</topic><topic>Upper bounds</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Kai</creatorcontrib><creatorcontrib>Gu, Chunlu</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Du, Yixian</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Saeed, Nouman</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Kai</au><au>Gu, Chunlu</au><au>Wang, Xuan</au><au>Liu, Jie</au><au>Du, Yixian</au><au>Chen, Zhuo</au><au>Saeed, Nouman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel minimum weight formulation of topology optimization implemented with reanalysis approach</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2019-11-02</date><risdate>2019</risdate><volume>120</volume><issue>5</issue><spage>567</spage><epage>579</epage><pages>567-579</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.6148</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2485-7095</orcidid><orcidid>https://orcid.org/0000-0001-7921-0497</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2019-11, Vol.120 (5), p.567-579 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2299410063 |
source | Wiley |
subjects | approximate reanalysis Dependence Design optimization Hessian matrices Matrix methods Minimum weight design multigrid preconditioned conjugate gradients Optimization preconditioned conjugate gradient Quadratic programming sequential quadratic programming Topology optimization Upper bounds Weight reduction |
title | A novel minimum weight formulation of topology optimization implemented with reanalysis approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20minimum%20weight%20formulation%20of%20topology%20optimization%20implemented%20with%20reanalysis%20approach&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Long,%20Kai&rft.date=2019-11-02&rft.volume=120&rft.issue=5&rft.spage=567&rft.epage=579&rft.pages=567-579&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6148&rft_dat=%3Cproquest_cross%3E2299410063%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299410063&rft_id=info:pmid/&rfr_iscdi=true |