Loading…
On Some Spectral Properties of Pseudo-differential Operators on T
In this paper we use Riesz spectral Theory and Gershgorin Theory to obtain explicit information concerning the spectrum of pseudo-differential operators defined on the unit circle T : = R / 2 π Z . For symbols in the Hörmander class S 1 , 0 m ( T × Z ) , we provide a sufficient and necessary conditi...
Saved in:
Published in: | The Journal of fourier analysis and applications 2019-10, Vol.25 (5), p.2703-2732 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2732 |
container_issue | 5 |
container_start_page | 2703 |
container_title | The Journal of fourier analysis and applications |
container_volume | 25 |
creator | Velasquez-Rodriguez, Juan Pablo |
description | In this paper we use Riesz spectral Theory and Gershgorin Theory to obtain explicit information concerning the spectrum of pseudo-differential operators defined on the unit circle
T
:
=
R
/
2
π
Z
. For symbols in the Hörmander class
S
1
,
0
m
(
T
×
Z
)
, we provide a sufficient and necessary condition to ensure that the corresponding pseudo-differential operator is a Riesz operator in
L
p
(
T
)
,
1
<
p
<
∞
, extending in this way compact operators characterisation in Molahajloo (Pseudo-Differ Oper Anal Appl Comput 213:25–29, 2011) and Ghoberg’s lemma in Molahajloo and Wong (J Pseudo-Differ Oper Appl 1(2):183–205, 2011) to
L
p
(
T
)
. We provide an example of a non-compact Riesz pseudo-differential operator in
L
p
(
T
)
,
1
<
p
<
2
. Also, for pseudo-differential operators with symbol satisfying some integrability condition, it is defined its associated matrix in terms of the Fourier coefficients of the symbol, and this matrix is used to give necessary and sufficient conditions for
L
2
-boundedness without assuming any regularity on the symbol, and to locate the spectrum of some operators. |
doi_str_mv | 10.1007/s00041-019-09680-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2300227524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300227524</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-876a899d512d23915321c21c28936f1c7d93028dee8e397e6d8e607df46d5bf03</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKd_wKuC19GTpM3H5RjqhEEHm9elNifSMZuapP_fzArCgfPCec7XS8g9g0cGoJ4iAJSMAjMUjNRA-QVZsEowWumKXWYN0mQtzTW5ifEIwJlQYkFW9VDs_RcW-xG7FNpTsQt-xJB6jIV3xS7iZD21vXMYcEh9Jupcb5MPGRiKwy25cu0p4t1fXpL3l-fDekO39evberWlI-cqUa1kq42xFeOWC5Nv46w7hzZCOtYpawRwbRE1CqNQWo0SlHWltNWHA7EkD_PcMfjvCWNqjn4KQ17ZcJH_4ariZabETMUx9MMnhn-KQXP2qpm9arJXza9Xuf0H1CJa0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300227524</pqid></control><display><type>article</type><title>On Some Spectral Properties of Pseudo-differential Operators on T</title><source>Springer Link</source><creator>Velasquez-Rodriguez, Juan Pablo</creator><creatorcontrib>Velasquez-Rodriguez, Juan Pablo</creatorcontrib><description>In this paper we use Riesz spectral Theory and Gershgorin Theory to obtain explicit information concerning the spectrum of pseudo-differential operators defined on the unit circle
T
:
=
R
/
2
π
Z
. For symbols in the Hörmander class
S
1
,
0
m
(
T
×
Z
)
, we provide a sufficient and necessary condition to ensure that the corresponding pseudo-differential operator is a Riesz operator in
L
p
(
T
)
,
1
<
p
<
∞
, extending in this way compact operators characterisation in Molahajloo (Pseudo-Differ Oper Anal Appl Comput 213:25–29, 2011) and Ghoberg’s lemma in Molahajloo and Wong (J Pseudo-Differ Oper Appl 1(2):183–205, 2011) to
L
p
(
T
)
. We provide an example of a non-compact Riesz pseudo-differential operator in
L
p
(
T
)
,
1
<
p
<
2
. Also, for pseudo-differential operators with symbol satisfying some integrability condition, it is defined its associated matrix in terms of the Fourier coefficients of the symbol, and this matrix is used to give necessary and sufficient conditions for
L
2
-boundedness without assuming any regularity on the symbol, and to locate the spectrum of some operators.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-019-09680-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Differential equations ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial Differential Equations ; Research Article ; Signal,Image and Speech Processing ; Spectral theory</subject><ispartof>The Journal of fourier analysis and applications, 2019-10, Vol.25 (5), p.2703-2732</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Velasquez-Rodriguez, Juan Pablo</creatorcontrib><title>On Some Spectral Properties of Pseudo-differential Operators on T</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper we use Riesz spectral Theory and Gershgorin Theory to obtain explicit information concerning the spectrum of pseudo-differential operators defined on the unit circle
T
:
=
R
/
2
π
Z
. For symbols in the Hörmander class
S
1
,
0
m
(
T
×
Z
)
, we provide a sufficient and necessary condition to ensure that the corresponding pseudo-differential operator is a Riesz operator in
L
p
(
T
)
,
1
<
p
<
∞
, extending in this way compact operators characterisation in Molahajloo (Pseudo-Differ Oper Anal Appl Comput 213:25–29, 2011) and Ghoberg’s lemma in Molahajloo and Wong (J Pseudo-Differ Oper Appl 1(2):183–205, 2011) to
L
p
(
T
)
. We provide an example of a non-compact Riesz pseudo-differential operator in
L
p
(
T
)
,
1
<
p
<
2
. Also, for pseudo-differential operators with symbol satisfying some integrability condition, it is defined its associated matrix in terms of the Fourier coefficients of the symbol, and this matrix is used to give necessary and sufficient conditions for
L
2
-boundedness without assuming any regularity on the symbol, and to locate the spectrum of some operators.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Differential equations</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Research Article</subject><subject>Signal,Image and Speech Processing</subject><subject>Spectral theory</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkF1LwzAUhoMoOKd_wKuC19GTpM3H5RjqhEEHm9elNifSMZuapP_fzArCgfPCec7XS8g9g0cGoJ4iAJSMAjMUjNRA-QVZsEowWumKXWYN0mQtzTW5ifEIwJlQYkFW9VDs_RcW-xG7FNpTsQt-xJB6jIV3xS7iZD21vXMYcEh9Jupcb5MPGRiKwy25cu0p4t1fXpL3l-fDekO39evberWlI-cqUa1kq42xFeOWC5Nv46w7hzZCOtYpawRwbRE1CqNQWo0SlHWltNWHA7EkD_PcMfjvCWNqjn4KQ17ZcJH_4ariZabETMUx9MMnhn-KQXP2qpm9arJXza9Xuf0H1CJa0Q</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Velasquez-Rodriguez, Juan Pablo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20191001</creationdate><title>On Some Spectral Properties of Pseudo-differential Operators on T</title><author>Velasquez-Rodriguez, Juan Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-876a899d512d23915321c21c28936f1c7d93028dee8e397e6d8e607df46d5bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Differential equations</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Research Article</topic><topic>Signal,Image and Speech Processing</topic><topic>Spectral theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velasquez-Rodriguez, Juan Pablo</creatorcontrib><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velasquez-Rodriguez, Juan Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Some Spectral Properties of Pseudo-differential Operators on T</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>25</volume><issue>5</issue><spage>2703</spage><epage>2732</epage><pages>2703-2732</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper we use Riesz spectral Theory and Gershgorin Theory to obtain explicit information concerning the spectrum of pseudo-differential operators defined on the unit circle
T
:
=
R
/
2
π
Z
. For symbols in the Hörmander class
S
1
,
0
m
(
T
×
Z
)
, we provide a sufficient and necessary condition to ensure that the corresponding pseudo-differential operator is a Riesz operator in
L
p
(
T
)
,
1
<
p
<
∞
, extending in this way compact operators characterisation in Molahajloo (Pseudo-Differ Oper Anal Appl Comput 213:25–29, 2011) and Ghoberg’s lemma in Molahajloo and Wong (J Pseudo-Differ Oper Appl 1(2):183–205, 2011) to
L
p
(
T
)
. We provide an example of a non-compact Riesz pseudo-differential operator in
L
p
(
T
)
,
1
<
p
<
2
. Also, for pseudo-differential operators with symbol satisfying some integrability condition, it is defined its associated matrix in terms of the Fourier coefficients of the symbol, and this matrix is used to give necessary and sufficient conditions for
L
2
-boundedness without assuming any regularity on the symbol, and to locate the spectrum of some operators.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-019-09680-2</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-5869 |
ispartof | The Journal of fourier analysis and applications, 2019-10, Vol.25 (5), p.2703-2732 |
issn | 1069-5869 1531-5851 |
language | eng |
recordid | cdi_proquest_journals_2300227524 |
source | Springer Link |
subjects | Abstract Harmonic Analysis Approximations and Expansions Differential equations Fourier Analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics Operators (mathematics) Partial Differential Equations Research Article Signal,Image and Speech Processing Spectral theory |
title | On Some Spectral Properties of Pseudo-differential Operators on T |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Some%20Spectral%20Properties%20of%20Pseudo-differential%20Operators%20on%20T&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Velasquez-Rodriguez,%20Juan%20Pablo&rft.date=2019-10-01&rft.volume=25&rft.issue=5&rft.spage=2703&rft.epage=2732&rft.pages=2703-2732&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-019-09680-2&rft_dat=%3Cproquest_sprin%3E2300227524%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p227t-876a899d512d23915321c21c28936f1c7d93028dee8e397e6d8e607df46d5bf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300227524&rft_id=info:pmid/&rfr_iscdi=true |