Loading…
Autonomous Design Space Exploration of Computing Systems for Sustainability: Opportunities and Challenges
Editor's note: Data-driven design methods are a promising way to design computing systems at various scales. This article presents a survey regarding data-driven techniques to design sustainable computing systems. - Partha Pratim Pande, Washington State University
Saved in:
Published in: | IEEE design and test 2019-10, Vol.36 (5), p.35-43 |
---|---|
Main Authors: | , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-b870ffeba8dc23a20f0368518eb3af80d235559f100154f713fe7a00e5576cd63 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-b870ffeba8dc23a20f0368518eb3af80d235559f100154f713fe7a00e5576cd63 |
container_end_page | 43 |
container_issue | 5 |
container_start_page | 35 |
container_title | IEEE design and test |
container_volume | 36 |
creator | Doppa, Janardhan Rao Rosca, Justinian Bogdan, Paul |
description | Editor's note: Data-driven design methods are a promising way to design computing systems at various scales. This article presents a survey regarding data-driven techniques to design sustainable computing systems. - Partha Pratim Pande, Washington State University |
doi_str_mv | 10.1109/MDAT.2019.2932894 |
format | magazinearticle |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300334271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8786182</ieee_id><sourcerecordid>2300334271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b870ffeba8dc23a20f0368518eb3af80d235559f100154f713fe7a00e5576cd63</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoSHNB5RuBF071cOy5e6Ckz4gJYukayHbUqpgS64kQ_P3dUjIbGYW98wwB4BHjOYYo-Lla7nYzQnCxZwUlPAivQETgjOeEJqlt9eZZfdgFsIBjcUZwZxPgFkM0VnXuSHApQpmb-G2l7WCq7--dV5G4yx0Gpau64do7B5ujyGqLkDtPNwOIUpjZWVaE4-vcNP3zsfBmmhUgNI2sPyRbavsXoUHcKdlG9Ts0qfg-221Kz-S9eb9s1ysk5rSLCYVz5HWqpK8qQmVBGlEM84wVxWVmqNm_IOxQmOEMEt1jqlWuURIMZZndZPRKXg-7-29-x1UiOLgBm_Hk4JQhChNyQhNAT6nau9C8EqL3ptO-qPASJykipNUcZIqLlJH5unMGKXUNc9znmFO6D-yv3QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2300334271</pqid></control><display><type>magazinearticle</type><title>Autonomous Design Space Exploration of Computing Systems for Sustainability: Opportunities and Challenges</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Doppa, Janardhan Rao ; Rosca, Justinian ; Bogdan, Paul</creator><creatorcontrib>Doppa, Janardhan Rao ; Rosca, Justinian ; Bogdan, Paul</creatorcontrib><description>Editor's note: Data-driven design methods are a promising way to design computing systems at various scales. This article presents a survey regarding data-driven techniques to design sustainable computing systems. - Partha Pratim Pande, Washington State University</description><identifier>ISSN: 2168-2356</identifier><identifier>EISSN: 2168-2364</identifier><identifier>DOI: 10.1109/MDAT.2019.2932894</identifier><identifier>CODEN: IDTCEC</identifier><language>eng</language><publisher>Piscataway: IEEE Computer Society</publisher><subject>Adaptation models ; and Data science ; Computation ; Computing systems ; Cyber-physical systems ; Data science ; Design space exploration and optimization ; Dynamic resource management ; Dynamic scheduling ; Hardware and software co-design ; Hardware design languages ; Machine learning ; Optimization ; Resource management ; Sustainability</subject><ispartof>IEEE design and test, 2019-10, Vol.36 (5), p.35-43</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b870ffeba8dc23a20f0368518eb3af80d235559f100154f713fe7a00e5576cd63</citedby><cites>FETCH-LOGICAL-c336t-b870ffeba8dc23a20f0368518eb3af80d235559f100154f713fe7a00e5576cd63</cites><orcidid>0000-0002-3848-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8786182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>776,780,27904,54775</link.rule.ids></links><search><creatorcontrib>Doppa, Janardhan Rao</creatorcontrib><creatorcontrib>Rosca, Justinian</creatorcontrib><creatorcontrib>Bogdan, Paul</creatorcontrib><title>Autonomous Design Space Exploration of Computing Systems for Sustainability: Opportunities and Challenges</title><title>IEEE design and test</title><addtitle>DTM</addtitle><description>Editor's note: Data-driven design methods are a promising way to design computing systems at various scales. This article presents a survey regarding data-driven techniques to design sustainable computing systems. - Partha Pratim Pande, Washington State University</description><subject>Adaptation models</subject><subject>and Data science</subject><subject>Computation</subject><subject>Computing systems</subject><subject>Cyber-physical systems</subject><subject>Data science</subject><subject>Design space exploration and optimization</subject><subject>Dynamic resource management</subject><subject>Dynamic scheduling</subject><subject>Hardware and software co-design</subject><subject>Hardware design languages</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Resource management</subject><subject>Sustainability</subject><issn>2168-2356</issn><issn>2168-2364</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2019</creationdate><recordtype>magazinearticle</recordtype><recordid>eNo9kMtqwzAQRUVpoSHNB5RuBF071cOy5e6Ckz4gJYukayHbUqpgS64kQ_P3dUjIbGYW98wwB4BHjOYYo-Lla7nYzQnCxZwUlPAivQETgjOeEJqlt9eZZfdgFsIBjcUZwZxPgFkM0VnXuSHApQpmb-G2l7WCq7--dV5G4yx0Gpau64do7B5ujyGqLkDtPNwOIUpjZWVaE4-vcNP3zsfBmmhUgNI2sPyRbavsXoUHcKdlG9Ts0qfg-221Kz-S9eb9s1ysk5rSLCYVz5HWqpK8qQmVBGlEM84wVxWVmqNm_IOxQmOEMEt1jqlWuURIMZZndZPRKXg-7-29-x1UiOLgBm_Hk4JQhChNyQhNAT6nau9C8EqL3ptO-qPASJykipNUcZIqLlJH5unMGKXUNc9znmFO6D-yv3QA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Doppa, Janardhan Rao</creator><creator>Rosca, Justinian</creator><creator>Bogdan, Paul</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3848-5301</orcidid></search><sort><creationdate>20191001</creationdate><title>Autonomous Design Space Exploration of Computing Systems for Sustainability: Opportunities and Challenges</title><author>Doppa, Janardhan Rao ; Rosca, Justinian ; Bogdan, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b870ffeba8dc23a20f0368518eb3af80d235559f100154f713fe7a00e5576cd63</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>and Data science</topic><topic>Computation</topic><topic>Computing systems</topic><topic>Cyber-physical systems</topic><topic>Data science</topic><topic>Design space exploration and optimization</topic><topic>Dynamic resource management</topic><topic>Dynamic scheduling</topic><topic>Hardware and software co-design</topic><topic>Hardware design languages</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Resource management</topic><topic>Sustainability</topic><toplevel>online_resources</toplevel><creatorcontrib>Doppa, Janardhan Rao</creatorcontrib><creatorcontrib>Rosca, Justinian</creatorcontrib><creatorcontrib>Bogdan, Paul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE design and test</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doppa, Janardhan Rao</au><au>Rosca, Justinian</au><au>Bogdan, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Design Space Exploration of Computing Systems for Sustainability: Opportunities and Challenges</atitle><jtitle>IEEE design and test</jtitle><stitle>DTM</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>36</volume><issue>5</issue><spage>35</spage><epage>43</epage><pages>35-43</pages><issn>2168-2356</issn><eissn>2168-2364</eissn><coden>IDTCEC</coden><abstract>Editor's note: Data-driven design methods are a promising way to design computing systems at various scales. This article presents a survey regarding data-driven techniques to design sustainable computing systems. - Partha Pratim Pande, Washington State University</abstract><cop>Piscataway</cop><pub>IEEE Computer Society</pub><doi>10.1109/MDAT.2019.2932894</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3848-5301</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2356 |
ispartof | IEEE design and test, 2019-10, Vol.36 (5), p.35-43 |
issn | 2168-2356 2168-2364 |
language | eng |
recordid | cdi_proquest_journals_2300334271 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models and Data science Computation Computing systems Cyber-physical systems Data science Design space exploration and optimization Dynamic resource management Dynamic scheduling Hardware and software co-design Hardware design languages Machine learning Optimization Resource management Sustainability |
title | Autonomous Design Space Exploration of Computing Systems for Sustainability: Opportunities and Challenges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Design%20Space%20Exploration%20of%20Computing%20Systems%20for%20Sustainability:%20Opportunities%20and%20Challenges&rft.jtitle=IEEE%20design%20and%20test&rft.au=Doppa,%20Janardhan%20Rao&rft.date=2019-10-01&rft.volume=36&rft.issue=5&rft.spage=35&rft.epage=43&rft.pages=35-43&rft.issn=2168-2356&rft.eissn=2168-2364&rft.coden=IDTCEC&rft_id=info:doi/10.1109/MDAT.2019.2932894&rft_dat=%3Cproquest_cross%3E2300334271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-b870ffeba8dc23a20f0368518eb3af80d235559f100154f713fe7a00e5576cd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300334271&rft_id=info:pmid/&rft_ieee_id=8786182&rfr_iscdi=true |