Loading…

Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities

Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surg...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics 2019-10, Vol.35 (5), p.1166-1185
Main Authors: Marinho, Murilo Marques, Adorno, Bruno Vilhena, Harada, Kanako, Mitsuishi, Mamoru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3
cites cdi_FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3
container_end_page 1185
container_issue 5
container_start_page 1166
container_title IEEE transactions on robotics
container_volume 35
creator Marinho, Murilo Marques
Adorno, Bruno Vilhena
Harada, Kanako
Mitsuishi, Mamoru
description Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this paper, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.
doi_str_mv 10.1109/TRO.2019.2920078
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300340051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8742769</ieee_id><sourcerecordid>2300340051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKt3wUvAc-rsR5rdY6lWC8VCrV6XzWZStqTZdjcR-u_d0uJlZhjedz6eJHkkMCIE5Mt6tRxRIHJEJQUoxFUyIJKTDPhYXMc6z2nGQIrb5C6ELQDlEtgg-Xw9tnpnTToxnf3FdOra0Hlt2y6ktfPpV-831ugmXbnSxd53sO0m_UHTOZ_NLDZVOm_x0OvGdhbDfXJT6ybgwyUPk_XsbT39yBbL9_l0ssgMB95lnOJYMqFpTgFZXZRcECCs4qVgFSuFFDw-FYMZmwpoQajGnOuqMDmirtgweT6P3Xt36DF0aut638aNijIAxgFyElVwVhnvQvBYq723O-2PioA6QVMRmjpBUxdo0fJ0tlhE_JeLgtMiHvwHkVZnWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300340051</pqid></control><display><type>article</type><title>Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Marinho, Murilo Marques ; Adorno, Bruno Vilhena ; Harada, Kanako ; Mitsuishi, Mamoru</creator><creatorcontrib>Marinho, Murilo Marques ; Adorno, Bruno Vilhena ; Harada, Kanako ; Mitsuishi, Mamoru</creatorcontrib><description>Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this paper, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2920078</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collision avoidance ; Collisions ; Constraints ; dual quaternions ; Inequalities ; Microsurgery ; optimization-based control ; Quaternions ; Robot kinematics ; Robotic surgery ; Robotics ; Robots ; Surgeons ; virtual fixtures</subject><ispartof>IEEE transactions on robotics, 2019-10, Vol.35 (5), p.1166-1185</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3</citedby><cites>FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3</cites><orcidid>0000-0003-2795-9484 ; 0000-0002-5080-8724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8742769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Marinho, Murilo Marques</creatorcontrib><creatorcontrib>Adorno, Bruno Vilhena</creatorcontrib><creatorcontrib>Harada, Kanako</creatorcontrib><creatorcontrib>Mitsuishi, Mamoru</creatorcontrib><title>Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this paper, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.</description><subject>Collision avoidance</subject><subject>Collisions</subject><subject>Constraints</subject><subject>dual quaternions</subject><subject>Inequalities</subject><subject>Microsurgery</subject><subject>optimization-based control</subject><subject>Quaternions</subject><subject>Robot kinematics</subject><subject>Robotic surgery</subject><subject>Robotics</subject><subject>Robots</subject><subject>Surgeons</subject><subject>virtual fixtures</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWKt3wUvAc-rsR5rdY6lWC8VCrV6XzWZStqTZdjcR-u_d0uJlZhjedz6eJHkkMCIE5Mt6tRxRIHJEJQUoxFUyIJKTDPhYXMc6z2nGQIrb5C6ELQDlEtgg-Xw9tnpnTToxnf3FdOra0Hlt2y6ktfPpV-831ugmXbnSxd53sO0m_UHTOZ_NLDZVOm_x0OvGdhbDfXJT6ybgwyUPk_XsbT39yBbL9_l0ssgMB95lnOJYMqFpTgFZXZRcECCs4qVgFSuFFDw-FYMZmwpoQajGnOuqMDmirtgweT6P3Xt36DF0aut638aNijIAxgFyElVwVhnvQvBYq723O-2PioA6QVMRmjpBUxdo0fJ0tlhE_JeLgtMiHvwHkVZnWg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Marinho, Murilo Marques</creator><creator>Adorno, Bruno Vilhena</creator><creator>Harada, Kanako</creator><creator>Mitsuishi, Mamoru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2795-9484</orcidid><orcidid>https://orcid.org/0000-0002-5080-8724</orcidid></search><sort><creationdate>201910</creationdate><title>Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities</title><author>Marinho, Murilo Marques ; Adorno, Bruno Vilhena ; Harada, Kanako ; Mitsuishi, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collision avoidance</topic><topic>Collisions</topic><topic>Constraints</topic><topic>dual quaternions</topic><topic>Inequalities</topic><topic>Microsurgery</topic><topic>optimization-based control</topic><topic>Quaternions</topic><topic>Robot kinematics</topic><topic>Robotic surgery</topic><topic>Robotics</topic><topic>Robots</topic><topic>Surgeons</topic><topic>virtual fixtures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinho, Murilo Marques</creatorcontrib><creatorcontrib>Adorno, Bruno Vilhena</creatorcontrib><creatorcontrib>Harada, Kanako</creatorcontrib><creatorcontrib>Mitsuishi, Mamoru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinho, Murilo Marques</au><au>Adorno, Bruno Vilhena</au><au>Harada, Kanako</au><au>Mitsuishi, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2019-10</date><risdate>2019</risdate><volume>35</volume><issue>5</issue><spage>1166</spage><epage>1185</epage><pages>1166-1185</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this paper, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2920078</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2795-9484</orcidid><orcidid>https://orcid.org/0000-0002-5080-8724</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2019-10, Vol.35 (5), p.1166-1185
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2300340051
source IEEE Electronic Library (IEL) Journals
subjects Collision avoidance
Collisions
Constraints
dual quaternions
Inequalities
Microsurgery
optimization-based control
Quaternions
Robot kinematics
Robotic surgery
Robotics
Robots
Surgeons
virtual fixtures
title Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Active%20Constraints%20for%20Surgical%20Robots%20Using%20Vector-Field%20Inequalities&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Marinho,%20Murilo%20Marques&rft.date=2019-10&rft.volume=35&rft.issue=5&rft.spage=1166&rft.epage=1185&rft.pages=1166-1185&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2920078&rft_dat=%3Cproquest_cross%3E2300340051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300340051&rft_id=info:pmid/&rft_ieee_id=8742769&rfr_iscdi=true