Loading…
Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities
Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surg...
Saved in:
Published in: | IEEE transactions on robotics 2019-10, Vol.35 (5), p.1166-1185 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3 |
container_end_page | 1185 |
container_issue | 5 |
container_start_page | 1166 |
container_title | IEEE transactions on robotics |
container_volume | 35 |
creator | Marinho, Murilo Marques Adorno, Bruno Vilhena Harada, Kanako Mitsuishi, Mamoru |
description | Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this paper, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions. |
doi_str_mv | 10.1109/TRO.2019.2920078 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300340051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8742769</ieee_id><sourcerecordid>2300340051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKt3wUvAc-rsR5rdY6lWC8VCrV6XzWZStqTZdjcR-u_d0uJlZhjedz6eJHkkMCIE5Mt6tRxRIHJEJQUoxFUyIJKTDPhYXMc6z2nGQIrb5C6ELQDlEtgg-Xw9tnpnTToxnf3FdOra0Hlt2y6ktfPpV-831ugmXbnSxd53sO0m_UHTOZ_NLDZVOm_x0OvGdhbDfXJT6ybgwyUPk_XsbT39yBbL9_l0ssgMB95lnOJYMqFpTgFZXZRcECCs4qVgFSuFFDw-FYMZmwpoQajGnOuqMDmirtgweT6P3Xt36DF0aut638aNijIAxgFyElVwVhnvQvBYq723O-2PioA6QVMRmjpBUxdo0fJ0tlhE_JeLgtMiHvwHkVZnWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300340051</pqid></control><display><type>article</type><title>Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Marinho, Murilo Marques ; Adorno, Bruno Vilhena ; Harada, Kanako ; Mitsuishi, Mamoru</creator><creatorcontrib>Marinho, Murilo Marques ; Adorno, Bruno Vilhena ; Harada, Kanako ; Mitsuishi, Mamoru</creatorcontrib><description>Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this paper, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2920078</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collision avoidance ; Collisions ; Constraints ; dual quaternions ; Inequalities ; Microsurgery ; optimization-based control ; Quaternions ; Robot kinematics ; Robotic surgery ; Robotics ; Robots ; Surgeons ; virtual fixtures</subject><ispartof>IEEE transactions on robotics, 2019-10, Vol.35 (5), p.1166-1185</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3</citedby><cites>FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3</cites><orcidid>0000-0003-2795-9484 ; 0000-0002-5080-8724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8742769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Marinho, Murilo Marques</creatorcontrib><creatorcontrib>Adorno, Bruno Vilhena</creatorcontrib><creatorcontrib>Harada, Kanako</creatorcontrib><creatorcontrib>Mitsuishi, Mamoru</creatorcontrib><title>Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this paper, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.</description><subject>Collision avoidance</subject><subject>Collisions</subject><subject>Constraints</subject><subject>dual quaternions</subject><subject>Inequalities</subject><subject>Microsurgery</subject><subject>optimization-based control</subject><subject>Quaternions</subject><subject>Robot kinematics</subject><subject>Robotic surgery</subject><subject>Robotics</subject><subject>Robots</subject><subject>Surgeons</subject><subject>virtual fixtures</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWKt3wUvAc-rsR5rdY6lWC8VCrV6XzWZStqTZdjcR-u_d0uJlZhjedz6eJHkkMCIE5Mt6tRxRIHJEJQUoxFUyIJKTDPhYXMc6z2nGQIrb5C6ELQDlEtgg-Xw9tnpnTToxnf3FdOra0Hlt2y6ktfPpV-831ugmXbnSxd53sO0m_UHTOZ_NLDZVOm_x0OvGdhbDfXJT6ybgwyUPk_XsbT39yBbL9_l0ssgMB95lnOJYMqFpTgFZXZRcECCs4qVgFSuFFDw-FYMZmwpoQajGnOuqMDmirtgweT6P3Xt36DF0aut638aNijIAxgFyElVwVhnvQvBYq723O-2PioA6QVMRmjpBUxdo0fJ0tlhE_JeLgtMiHvwHkVZnWg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Marinho, Murilo Marques</creator><creator>Adorno, Bruno Vilhena</creator><creator>Harada, Kanako</creator><creator>Mitsuishi, Mamoru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2795-9484</orcidid><orcidid>https://orcid.org/0000-0002-5080-8724</orcidid></search><sort><creationdate>201910</creationdate><title>Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities</title><author>Marinho, Murilo Marques ; Adorno, Bruno Vilhena ; Harada, Kanako ; Mitsuishi, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collision avoidance</topic><topic>Collisions</topic><topic>Constraints</topic><topic>dual quaternions</topic><topic>Inequalities</topic><topic>Microsurgery</topic><topic>optimization-based control</topic><topic>Quaternions</topic><topic>Robot kinematics</topic><topic>Robotic surgery</topic><topic>Robotics</topic><topic>Robots</topic><topic>Surgeons</topic><topic>virtual fixtures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinho, Murilo Marques</creatorcontrib><creatorcontrib>Adorno, Bruno Vilhena</creatorcontrib><creatorcontrib>Harada, Kanako</creatorcontrib><creatorcontrib>Mitsuishi, Mamoru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinho, Murilo Marques</au><au>Adorno, Bruno Vilhena</au><au>Harada, Kanako</au><au>Mitsuishi, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2019-10</date><risdate>2019</risdate><volume>35</volume><issue>5</issue><spage>1166</spage><epage>1185</epage><pages>1166-1185</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still under-represented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this paper, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2920078</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2795-9484</orcidid><orcidid>https://orcid.org/0000-0002-5080-8724</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2019-10, Vol.35 (5), p.1166-1185 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_2300340051 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Collision avoidance Collisions Constraints dual quaternions Inequalities Microsurgery optimization-based control Quaternions Robot kinematics Robotic surgery Robotics Robots Surgeons virtual fixtures |
title | Dynamic Active Constraints for Surgical Robots Using Vector-Field Inequalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Active%20Constraints%20for%20Surgical%20Robots%20Using%20Vector-Field%20Inequalities&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Marinho,%20Murilo%20Marques&rft.date=2019-10&rft.volume=35&rft.issue=5&rft.spage=1166&rft.epage=1185&rft.pages=1166-1185&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2920078&rft_dat=%3Cproquest_cross%3E2300340051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-42e6938a2520e3f7b481013d4b83d3b8984110841c6cd02712ae54ad7c5eead3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300340051&rft_id=info:pmid/&rft_ieee_id=8742769&rfr_iscdi=true |