Loading…

Deletion-contraction triangles for Hausel-Proudfoot varieties

To a graph, Hausel and Proudfoot associate two complex manifolds, B and D, which behave, respectively like moduli of local systems on a Riemann surface, and moduli of Higgs bundles. For instance, B is a moduli space of microlocal sheaves, which generalize local systems, and D carries the structure o...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-10
Main Authors: Dancso, Zsuzsanna, McBreen, Michael, Shende, Vivek
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dancso, Zsuzsanna
McBreen, Michael
Shende, Vivek
description To a graph, Hausel and Proudfoot associate two complex manifolds, B and D, which behave, respectively like moduli of local systems on a Riemann surface, and moduli of Higgs bundles. For instance, B is a moduli space of microlocal sheaves, which generalize local systems, and D carries the structure of a complex integrable system. We show the Euler characteristics of these varieties count spanning subtrees of the graph, and the point-count over a finite field for B is a generating polynomial for spanning subgraphs. This polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact triangle for the cohomology of B. There is a corresponding triangle for D. Finally, we prove B and D are diffeomorphic, that the diffeomorphism carries the weight filtration on the cohomology of B to the perverse Leray filtration on the cohomology of D, and that all these structures are compatible with the deletion-contraction triangles.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2300429820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300429820</sourcerecordid><originalsourceid>FETCH-proquest_journals_23004298203</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRYMgWLT_EHAdiJNW68KVD7p04b6EOpGWkNFM4vdbwQ9wdQ-cc2eiAGM2qqkAFqJkHrXWsN1BXZtCHE7oMQ0UVE8hRdt_WaY42PDwyNJRlK3NjF5dI-W7I0rybeMwnZBXYu6sZyx_uxTry_l2bNUz0isjp26kHMOkOjBaV7BvQJv_qg_fCTiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300429820</pqid></control><display><type>article</type><title>Deletion-contraction triangles for Hausel-Proudfoot varieties</title><source>Publicly Available Content Database</source><creator>Dancso, Zsuzsanna ; McBreen, Michael ; Shende, Vivek</creator><creatorcontrib>Dancso, Zsuzsanna ; McBreen, Michael ; Shende, Vivek</creatorcontrib><description>To a graph, Hausel and Proudfoot associate two complex manifolds, B and D, which behave, respectively like moduli of local systems on a Riemann surface, and moduli of Higgs bundles. For instance, B is a moduli space of microlocal sheaves, which generalize local systems, and D carries the structure of a complex integrable system. We show the Euler characteristics of these varieties count spanning subtrees of the graph, and the point-count over a finite field for B is a generating polynomial for spanning subgraphs. This polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact triangle for the cohomology of B. There is a corresponding triangle for D. Finally, we prove B and D are diffeomorphic, that the diffeomorphism carries the weight filtration on the cohomology of B to the perverse Leray filtration on the cohomology of D, and that all these structures are compatible with the deletion-contraction triangles.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deletion ; Fields (mathematics) ; Filtration ; Graph theory ; Homology ; Isomorphism ; Polynomials ; Riemann surfaces ; Sheaves</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2300429820?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Dancso, Zsuzsanna</creatorcontrib><creatorcontrib>McBreen, Michael</creatorcontrib><creatorcontrib>Shende, Vivek</creatorcontrib><title>Deletion-contraction triangles for Hausel-Proudfoot varieties</title><title>arXiv.org</title><description>To a graph, Hausel and Proudfoot associate two complex manifolds, B and D, which behave, respectively like moduli of local systems on a Riemann surface, and moduli of Higgs bundles. For instance, B is a moduli space of microlocal sheaves, which generalize local systems, and D carries the structure of a complex integrable system. We show the Euler characteristics of these varieties count spanning subtrees of the graph, and the point-count over a finite field for B is a generating polynomial for spanning subgraphs. This polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact triangle for the cohomology of B. There is a corresponding triangle for D. Finally, we prove B and D are diffeomorphic, that the diffeomorphism carries the weight filtration on the cohomology of B to the perverse Leray filtration on the cohomology of D, and that all these structures are compatible with the deletion-contraction triangles.</description><subject>Deletion</subject><subject>Fields (mathematics)</subject><subject>Filtration</subject><subject>Graph theory</subject><subject>Homology</subject><subject>Isomorphism</subject><subject>Polynomials</subject><subject>Riemann surfaces</subject><subject>Sheaves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8sKwjAQRYMgWLT_EHAdiJNW68KVD7p04b6EOpGWkNFM4vdbwQ9wdQ-cc2eiAGM2qqkAFqJkHrXWsN1BXZtCHE7oMQ0UVE8hRdt_WaY42PDwyNJRlK3NjF5dI-W7I0rybeMwnZBXYu6sZyx_uxTry_l2bNUz0isjp26kHMOkOjBaV7BvQJv_qg_fCTiw</recordid><startdate>20221008</startdate><enddate>20221008</enddate><creator>Dancso, Zsuzsanna</creator><creator>McBreen, Michael</creator><creator>Shende, Vivek</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221008</creationdate><title>Deletion-contraction triangles for Hausel-Proudfoot varieties</title><author>Dancso, Zsuzsanna ; McBreen, Michael ; Shende, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23004298203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deletion</topic><topic>Fields (mathematics)</topic><topic>Filtration</topic><topic>Graph theory</topic><topic>Homology</topic><topic>Isomorphism</topic><topic>Polynomials</topic><topic>Riemann surfaces</topic><topic>Sheaves</topic><toplevel>online_resources</toplevel><creatorcontrib>Dancso, Zsuzsanna</creatorcontrib><creatorcontrib>McBreen, Michael</creatorcontrib><creatorcontrib>Shende, Vivek</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dancso, Zsuzsanna</au><au>McBreen, Michael</au><au>Shende, Vivek</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deletion-contraction triangles for Hausel-Proudfoot varieties</atitle><jtitle>arXiv.org</jtitle><date>2022-10-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>To a graph, Hausel and Proudfoot associate two complex manifolds, B and D, which behave, respectively like moduli of local systems on a Riemann surface, and moduli of Higgs bundles. For instance, B is a moduli space of microlocal sheaves, which generalize local systems, and D carries the structure of a complex integrable system. We show the Euler characteristics of these varieties count spanning subtrees of the graph, and the point-count over a finite field for B is a generating polynomial for spanning subgraphs. This polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact triangle for the cohomology of B. There is a corresponding triangle for D. Finally, we prove B and D are diffeomorphic, that the diffeomorphism carries the weight filtration on the cohomology of B to the perverse Leray filtration on the cohomology of D, and that all these structures are compatible with the deletion-contraction triangles.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2300429820
source Publicly Available Content Database
subjects Deletion
Fields (mathematics)
Filtration
Graph theory
Homology
Isomorphism
Polynomials
Riemann surfaces
Sheaves
title Deletion-contraction triangles for Hausel-Proudfoot varieties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deletion-contraction%20triangles%20for%20Hausel-Proudfoot%20varieties&rft.jtitle=arXiv.org&rft.au=Dancso,%20Zsuzsanna&rft.date=2022-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2300429820%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23004298203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300429820&rft_id=info:pmid/&rfr_iscdi=true