Loading…

Bio-Inspired Foveated Technique for Augmented-Range Vehicle Detection Using Deep Neural Networks

We propose a bio-inspired foveated technique to detect cars in a long range camera view using a deep convolutional neural network (DCNN) for the IARA self-driving car. The DCNN receives as input (i) an image, which is captured by a camera installed on IARA's roof; and (ii) crops of the image, w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Authors: Azevedo, Pedro, Panceri, Sabrina S, Guidolini, Rânik, Cardoso, Vinicius B, Badue, Claudine, Oliveira-Santos, Thiago, De Souza, Alberto F
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Azevedo, Pedro
Panceri, Sabrina S
Guidolini, Rânik
Cardoso, Vinicius B
Badue, Claudine
Oliveira-Santos, Thiago
De Souza, Alberto F
description We propose a bio-inspired foveated technique to detect cars in a long range camera view using a deep convolutional neural network (DCNN) for the IARA self-driving car. The DCNN receives as input (i) an image, which is captured by a camera installed on IARA's roof; and (ii) crops of the image, which are centered in the waypoints computed by IARA's path planner and whose sizes increase with the distance from IARA. We employ an overlap filter to discard detections of the same car in different crops of the same image based on the percentage of overlap of detections' bounding boxes. We evaluated the performance of the proposed augmented-range vehicle detection system (ARVDS) using the hardware and software infrastructure available in the IARA self-driving car. Using IARA, we captured thousands of images of real traffic situations containing cars in a long range. Experimental results show that ARVDS increases the Average Precision (AP) of long range car detection from 29.51% (using a single whole image) to 63.15%.
doi_str_mv 10.48550/arxiv.1910.00944
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2300429901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300429901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-8182e7227685b672741a3c8c3a35b112318ef958a8a54d94e3f505a513c6ac0d3</originalsourceid><addsrcrecordid>eNotjk1LwzAcxoMgOOY-gLeA5868tslxTqeDoSDV68zSf7vMmsyknX58A3p6Xg7P80PoipK5UFKSGxN_3GlOdS4I0UKcoQnjnBZKMHaBZikdCCGsrJiUfILeb10o1j4dXYQGr8IJzJBNDXbv3dcIuA0RL8buE3zuixfjO8BvsHe2B3wHA9jBBY9fk_NdznDETzBG02cZvkP8SJfovDV9gtm_TlG9uq-Xj8Xm-WG9XGwKI1mGo4pBxVhVKrnLbJWghltlueFyRynjVEGrpTLKSNFoAbyVRBpJuS2NJQ2fouu_2WMMGTsN20MYo8-PW8YJEUxrQvkvYDNU7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300429901</pqid></control><display><type>article</type><title>Bio-Inspired Foveated Technique for Augmented-Range Vehicle Detection Using Deep Neural Networks</title><source>Publicly Available Content Database</source><creator>Azevedo, Pedro ; Panceri, Sabrina S ; Guidolini, Rânik ; Cardoso, Vinicius B ; Badue, Claudine ; Oliveira-Santos, Thiago ; De Souza, Alberto F</creator><creatorcontrib>Azevedo, Pedro ; Panceri, Sabrina S ; Guidolini, Rânik ; Cardoso, Vinicius B ; Badue, Claudine ; Oliveira-Santos, Thiago ; De Souza, Alberto F</creatorcontrib><description>We propose a bio-inspired foveated technique to detect cars in a long range camera view using a deep convolutional neural network (DCNN) for the IARA self-driving car. The DCNN receives as input (i) an image, which is captured by a camera installed on IARA's roof; and (ii) crops of the image, which are centered in the waypoints computed by IARA's path planner and whose sizes increase with the distance from IARA. We employ an overlap filter to discard detections of the same car in different crops of the same image based on the percentage of overlap of detections' bounding boxes. We evaluated the performance of the proposed augmented-range vehicle detection system (ARVDS) using the hardware and software infrastructure available in the IARA self-driving car. Using IARA, we captured thousands of images of real traffic situations containing cars in a long range. Experimental results show that ARVDS increases the Average Precision (AP) of long range car detection from 29.51% (using a single whole image) to 63.15%.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1910.00944</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Autonomous cars ; Autonomous vehicles ; Cameras ; Crops ; Image detection ; Neural networks ; Waypoints</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2300429901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Azevedo, Pedro</creatorcontrib><creatorcontrib>Panceri, Sabrina S</creatorcontrib><creatorcontrib>Guidolini, Rânik</creatorcontrib><creatorcontrib>Cardoso, Vinicius B</creatorcontrib><creatorcontrib>Badue, Claudine</creatorcontrib><creatorcontrib>Oliveira-Santos, Thiago</creatorcontrib><creatorcontrib>De Souza, Alberto F</creatorcontrib><title>Bio-Inspired Foveated Technique for Augmented-Range Vehicle Detection Using Deep Neural Networks</title><title>arXiv.org</title><description>We propose a bio-inspired foveated technique to detect cars in a long range camera view using a deep convolutional neural network (DCNN) for the IARA self-driving car. The DCNN receives as input (i) an image, which is captured by a camera installed on IARA's roof; and (ii) crops of the image, which are centered in the waypoints computed by IARA's path planner and whose sizes increase with the distance from IARA. We employ an overlap filter to discard detections of the same car in different crops of the same image based on the percentage of overlap of detections' bounding boxes. We evaluated the performance of the proposed augmented-range vehicle detection system (ARVDS) using the hardware and software infrastructure available in the IARA self-driving car. Using IARA, we captured thousands of images of real traffic situations containing cars in a long range. Experimental results show that ARVDS increases the Average Precision (AP) of long range car detection from 29.51% (using a single whole image) to 63.15%.</description><subject>Artificial neural networks</subject><subject>Autonomous cars</subject><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>Crops</subject><subject>Image detection</subject><subject>Neural networks</subject><subject>Waypoints</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LwzAcxoMgOOY-gLeA5868tslxTqeDoSDV68zSf7vMmsyknX58A3p6Xg7P80PoipK5UFKSGxN_3GlOdS4I0UKcoQnjnBZKMHaBZikdCCGsrJiUfILeb10o1j4dXYQGr8IJzJBNDXbv3dcIuA0RL8buE3zuixfjO8BvsHe2B3wHA9jBBY9fk_NdznDETzBG02cZvkP8SJfovDV9gtm_TlG9uq-Xj8Xm-WG9XGwKI1mGo4pBxVhVKrnLbJWghltlueFyRynjVEGrpTLKSNFoAbyVRBpJuS2NJQ2fouu_2WMMGTsN20MYo8-PW8YJEUxrQvkvYDNU7w</recordid><startdate>20191002</startdate><enddate>20191002</enddate><creator>Azevedo, Pedro</creator><creator>Panceri, Sabrina S</creator><creator>Guidolini, Rânik</creator><creator>Cardoso, Vinicius B</creator><creator>Badue, Claudine</creator><creator>Oliveira-Santos, Thiago</creator><creator>De Souza, Alberto F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191002</creationdate><title>Bio-Inspired Foveated Technique for Augmented-Range Vehicle Detection Using Deep Neural Networks</title><author>Azevedo, Pedro ; Panceri, Sabrina S ; Guidolini, Rânik ; Cardoso, Vinicius B ; Badue, Claudine ; Oliveira-Santos, Thiago ; De Souza, Alberto F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-8182e7227685b672741a3c8c3a35b112318ef958a8a54d94e3f505a513c6ac0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Autonomous cars</topic><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>Crops</topic><topic>Image detection</topic><topic>Neural networks</topic><topic>Waypoints</topic><toplevel>online_resources</toplevel><creatorcontrib>Azevedo, Pedro</creatorcontrib><creatorcontrib>Panceri, Sabrina S</creatorcontrib><creatorcontrib>Guidolini, Rânik</creatorcontrib><creatorcontrib>Cardoso, Vinicius B</creatorcontrib><creatorcontrib>Badue, Claudine</creatorcontrib><creatorcontrib>Oliveira-Santos, Thiago</creatorcontrib><creatorcontrib>De Souza, Alberto F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azevedo, Pedro</au><au>Panceri, Sabrina S</au><au>Guidolini, Rânik</au><au>Cardoso, Vinicius B</au><au>Badue, Claudine</au><au>Oliveira-Santos, Thiago</au><au>De Souza, Alberto F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-Inspired Foveated Technique for Augmented-Range Vehicle Detection Using Deep Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2019-10-02</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We propose a bio-inspired foveated technique to detect cars in a long range camera view using a deep convolutional neural network (DCNN) for the IARA self-driving car. The DCNN receives as input (i) an image, which is captured by a camera installed on IARA's roof; and (ii) crops of the image, which are centered in the waypoints computed by IARA's path planner and whose sizes increase with the distance from IARA. We employ an overlap filter to discard detections of the same car in different crops of the same image based on the percentage of overlap of detections' bounding boxes. We evaluated the performance of the proposed augmented-range vehicle detection system (ARVDS) using the hardware and software infrastructure available in the IARA self-driving car. Using IARA, we captured thousands of images of real traffic situations containing cars in a long range. Experimental results show that ARVDS increases the Average Precision (AP) of long range car detection from 29.51% (using a single whole image) to 63.15%.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1910.00944</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2300429901
source Publicly Available Content Database
subjects Artificial neural networks
Autonomous cars
Autonomous vehicles
Cameras
Crops
Image detection
Neural networks
Waypoints
title Bio-Inspired Foveated Technique for Augmented-Range Vehicle Detection Using Deep Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-Inspired%20Foveated%20Technique%20for%20Augmented-Range%20Vehicle%20Detection%20Using%20Deep%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Azevedo,%20Pedro&rft.date=2019-10-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1910.00944&rft_dat=%3Cproquest%3E2300429901%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-8182e7227685b672741a3c8c3a35b112318ef958a8a54d94e3f505a513c6ac0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300429901&rft_id=info:pmid/&rfr_iscdi=true