Loading…

P‐4.6: Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals

To explore new constituents in two‐dimensional materials and to combine their best in van der Waals heterostructures, are in great demand as being unique platform to discover new physical phenomena and to design novel functionalities in interface‐based devices. Herein, PbI2 crystals as thin as few‐l...

Full description

Saved in:
Bibliographic Details
Published in:SID International Symposium Digest of technical papers 2019-09, Vol.50 (S1), p.714-715
Main Authors: 孙研, 周子澍, 黄振, 吴江滨, 周柳江, 程阳, 刘金秋, 朱超, 刘开辉, 王晓勇, 王建浦, 黄维, 王琳
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 715
container_issue S1
container_start_page 714
container_title SID International Symposium Digest of technical papers
container_volume 50
creator 孙研
周子澍
黄振
吴江滨
周柳江
程阳
刘金秋
朱超
刘开辉
王晓勇
王建浦
黄维
王琳
description To explore new constituents in two‐dimensional materials and to combine their best in van der Waals heterostructures, are in great demand as being unique platform to discover new physical phenomena and to design novel functionalities in interface‐based devices. Herein, PbI2 crystals as thin as few‐layers are first synthesized, particularly through a facile low‐temperature solution approach with the crystals of large size, regular shape, different thicknesses and high‐yields. As a prototypical demonstration of flexible band engineering of PbI2‐based interfacial semiconductors, these PbI2 crystals are subsequently assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS2 is strongly enhanced in MoS2/PbI2 stacks, while a dramatic photoluminescence quenching of WS2 and WSe2 is revealed in WS2/PbI2 and WSe2/PbI2 stacks. This is attributed to the effective heterojunction formation between PbI2 and these monolayers, but type I band alignment in MoS2/PbI2 stacks where fast‐transferred charge carriers accumulate in MoS2 with high emission efficiency, and type II in WS2/PbI2 and WSe2/PbI2 stacks with separated electrons and holes suitable for light harvesting. Our results demonstrate that MoS2, WS2, WSe2 monolayers with very similar electronic structures themselves, show completely distinct light‐matter interactions when interfacing with PbI2, providing unprecedent capabilities to engineer the device performance of two‐dimensional heterostructures. 1 图 1 异质结中 PbI2引起的MoS2发光增强与WSe2发光 淬灭
doi_str_mv 10.1002/sdtp.13621
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300542148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300542148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1051-a2835186fdd44ba7ee4dc53527c2b803e4a9ae6e39b26c6ab4fe161f9d189ff03</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFY3PsGAOyF1_jJN3NVatVCw0AruwiRzp6akM3UmQbLzEXxGn8TUuHZ1Fvc758KH0CUlI0oIuwm63o8ol4weoQGjMokIjdNjNCAkHUeplK-n6CyELSGcC5EOkFt-f36JkbzFd8pqvKp9U9SNBzyzm9IC-NJusDN4bmvwRhWlqvAKdmXhrO5I50NXDKCxs3hSu-6gqqrF67fS4gUojedOlxrw1LehVlU4RyemC7j4yyF6eZitp0_R4vlxPp0sooKSmEaKJTymiTRaC5GrMYDQRcxjNi5YnhAOQqUKJPA0Z7KQKhcGqKQm1TRJjSF8iK763b137w2EOtu6xtvuZcY4IbFgVCQddd1ThXcheDDZ3pc75duMkuwgNDsIzX6FdjDt4Y-ygvYfMlvdr5d95wfRjXnF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300542148</pqid></control><display><type>article</type><title>P‐4.6: Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>孙研 ; 周子澍 ; 黄振 ; 吴江滨 ; 周柳江 ; 程阳 ; 刘金秋 ; 朱超 ; 刘开辉 ; 王晓勇 ; 王建浦 ; 黄维 ; 王琳</creator><creatorcontrib>孙研 ; 周子澍 ; 黄振 ; 吴江滨 ; 周柳江 ; 程阳 ; 刘金秋 ; 朱超 ; 刘开辉 ; 王晓勇 ; 王建浦 ; 黄维 ; 王琳</creatorcontrib><description>To explore new constituents in two‐dimensional materials and to combine their best in van der Waals heterostructures, are in great demand as being unique platform to discover new physical phenomena and to design novel functionalities in interface‐based devices. Herein, PbI2 crystals as thin as few‐layers are first synthesized, particularly through a facile low‐temperature solution approach with the crystals of large size, regular shape, different thicknesses and high‐yields. As a prototypical demonstration of flexible band engineering of PbI2‐based interfacial semiconductors, these PbI2 crystals are subsequently assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS2 is strongly enhanced in MoS2/PbI2 stacks, while a dramatic photoluminescence quenching of WS2 and WSe2 is revealed in WS2/PbI2 and WSe2/PbI2 stacks. This is attributed to the effective heterojunction formation between PbI2 and these monolayers, but type I band alignment in MoS2/PbI2 stacks where fast‐transferred charge carriers accumulate in MoS2 with high emission efficiency, and type II in WS2/PbI2 and WSe2/PbI2 stacks with separated electrons and holes suitable for light harvesting. Our results demonstrate that MoS2, WS2, WSe2 monolayers with very similar electronic structures themselves, show completely distinct light‐matter interactions when interfacing with PbI2, providing unprecedent capabilities to engineer the device performance of two‐dimensional heterostructures. 1 图 1 异质结中 PbI2引起的MoS2发光增强与WSe2发光 淬灭</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.13621</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; Crystals ; Current carriers ; Heterojunctions ; Heterostructures ; Molybdenum disulfide ; Monolayers ; Photoluminescence ; Semiconductors ; Stacks ; Thin films ; Transition metal compounds ; Tungsten disulfide ; 二维半导体 ; 二维异质结 ; 层间作用 ; 电荷转移</subject><ispartof>SID International Symposium Digest of technical papers, 2019-09, Vol.50 (S1), p.714-715</ispartof><rights>2019 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>孙研</creatorcontrib><creatorcontrib>周子澍</creatorcontrib><creatorcontrib>黄振</creatorcontrib><creatorcontrib>吴江滨</creatorcontrib><creatorcontrib>周柳江</creatorcontrib><creatorcontrib>程阳</creatorcontrib><creatorcontrib>刘金秋</creatorcontrib><creatorcontrib>朱超</creatorcontrib><creatorcontrib>刘开辉</creatorcontrib><creatorcontrib>王晓勇</creatorcontrib><creatorcontrib>王建浦</creatorcontrib><creatorcontrib>黄维</creatorcontrib><creatorcontrib>王琳</creatorcontrib><title>P‐4.6: Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals</title><title>SID International Symposium Digest of technical papers</title><description>To explore new constituents in two‐dimensional materials and to combine their best in van der Waals heterostructures, are in great demand as being unique platform to discover new physical phenomena and to design novel functionalities in interface‐based devices. Herein, PbI2 crystals as thin as few‐layers are first synthesized, particularly through a facile low‐temperature solution approach with the crystals of large size, regular shape, different thicknesses and high‐yields. As a prototypical demonstration of flexible band engineering of PbI2‐based interfacial semiconductors, these PbI2 crystals are subsequently assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS2 is strongly enhanced in MoS2/PbI2 stacks, while a dramatic photoluminescence quenching of WS2 and WSe2 is revealed in WS2/PbI2 and WSe2/PbI2 stacks. This is attributed to the effective heterojunction formation between PbI2 and these monolayers, but type I band alignment in MoS2/PbI2 stacks where fast‐transferred charge carriers accumulate in MoS2 with high emission efficiency, and type II in WS2/PbI2 and WSe2/PbI2 stacks with separated electrons and holes suitable for light harvesting. Our results demonstrate that MoS2, WS2, WSe2 monolayers with very similar electronic structures themselves, show completely distinct light‐matter interactions when interfacing with PbI2, providing unprecedent capabilities to engineer the device performance of two‐dimensional heterostructures. 1 图 1 异质结中 PbI2引起的MoS2发光增强与WSe2发光 淬灭</description><subject>Charge transfer</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Photoluminescence</subject><subject>Semiconductors</subject><subject>Stacks</subject><subject>Thin films</subject><subject>Transition metal compounds</subject><subject>Tungsten disulfide</subject><subject>二维半导体</subject><subject>二维异质结</subject><subject>层间作用</subject><subject>电荷转移</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFY3PsGAOyF1_jJN3NVatVCw0AruwiRzp6akM3UmQbLzEXxGn8TUuHZ1Fvc758KH0CUlI0oIuwm63o8ol4weoQGjMokIjdNjNCAkHUeplK-n6CyELSGcC5EOkFt-f36JkbzFd8pqvKp9U9SNBzyzm9IC-NJusDN4bmvwRhWlqvAKdmXhrO5I50NXDKCxs3hSu-6gqqrF67fS4gUojedOlxrw1LehVlU4RyemC7j4yyF6eZitp0_R4vlxPp0sooKSmEaKJTymiTRaC5GrMYDQRcxjNi5YnhAOQqUKJPA0Z7KQKhcGqKQm1TRJjSF8iK763b137w2EOtu6xtvuZcY4IbFgVCQddd1ThXcheDDZ3pc75duMkuwgNDsIzX6FdjDt4Y-ygvYfMlvdr5d95wfRjXnF</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>孙研</creator><creator>周子澍</creator><creator>黄振</creator><creator>吴江滨</creator><creator>周柳江</creator><creator>程阳</creator><creator>刘金秋</creator><creator>朱超</creator><creator>刘开辉</creator><creator>王晓勇</creator><creator>王建浦</creator><creator>黄维</creator><creator>王琳</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>P‐4.6: Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals</title><author>孙研 ; 周子澍 ; 黄振 ; 吴江滨 ; 周柳江 ; 程阳 ; 刘金秋 ; 朱超 ; 刘开辉 ; 王晓勇 ; 王建浦 ; 黄维 ; 王琳</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1051-a2835186fdd44ba7ee4dc53527c2b803e4a9ae6e39b26c6ab4fe161f9d189ff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transfer</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Photoluminescence</topic><topic>Semiconductors</topic><topic>Stacks</topic><topic>Thin films</topic><topic>Transition metal compounds</topic><topic>Tungsten disulfide</topic><topic>二维半导体</topic><topic>二维异质结</topic><topic>层间作用</topic><topic>电荷转移</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>孙研</creatorcontrib><creatorcontrib>周子澍</creatorcontrib><creatorcontrib>黄振</creatorcontrib><creatorcontrib>吴江滨</creatorcontrib><creatorcontrib>周柳江</creatorcontrib><creatorcontrib>程阳</creatorcontrib><creatorcontrib>刘金秋</creatorcontrib><creatorcontrib>朱超</creatorcontrib><creatorcontrib>刘开辉</creatorcontrib><creatorcontrib>王晓勇</creatorcontrib><creatorcontrib>王建浦</creatorcontrib><creatorcontrib>黄维</creatorcontrib><creatorcontrib>王琳</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>孙研</au><au>周子澍</au><au>黄振</au><au>吴江滨</au><au>周柳江</au><au>程阳</au><au>刘金秋</au><au>朱超</au><au>刘开辉</au><au>王晓勇</au><au>王建浦</au><au>黄维</au><au>王琳</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P‐4.6: Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2019-09</date><risdate>2019</risdate><volume>50</volume><issue>S1</issue><spage>714</spage><epage>715</epage><pages>714-715</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>To explore new constituents in two‐dimensional materials and to combine their best in van der Waals heterostructures, are in great demand as being unique platform to discover new physical phenomena and to design novel functionalities in interface‐based devices. Herein, PbI2 crystals as thin as few‐layers are first synthesized, particularly through a facile low‐temperature solution approach with the crystals of large size, regular shape, different thicknesses and high‐yields. As a prototypical demonstration of flexible band engineering of PbI2‐based interfacial semiconductors, these PbI2 crystals are subsequently assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS2 is strongly enhanced in MoS2/PbI2 stacks, while a dramatic photoluminescence quenching of WS2 and WSe2 is revealed in WS2/PbI2 and WSe2/PbI2 stacks. This is attributed to the effective heterojunction formation between PbI2 and these monolayers, but type I band alignment in MoS2/PbI2 stacks where fast‐transferred charge carriers accumulate in MoS2 with high emission efficiency, and type II in WS2/PbI2 and WSe2/PbI2 stacks with separated electrons and holes suitable for light harvesting. Our results demonstrate that MoS2, WS2, WSe2 monolayers with very similar electronic structures themselves, show completely distinct light‐matter interactions when interfacing with PbI2, providing unprecedent capabilities to engineer the device performance of two‐dimensional heterostructures. 1 图 1 异质结中 PbI2引起的MoS2发光增强与WSe2发光 淬灭</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.13621</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-966X
ispartof SID International Symposium Digest of technical papers, 2019-09, Vol.50 (S1), p.714-715
issn 0097-966X
2168-0159
language eng
recordid cdi_proquest_journals_2300542148
source Wiley-Blackwell Read & Publish Collection
subjects Charge transfer
Crystals
Current carriers
Heterojunctions
Heterostructures
Molybdenum disulfide
Monolayers
Photoluminescence
Semiconductors
Stacks
Thin films
Transition metal compounds
Tungsten disulfide
二维半导体
二维异质结
层间作用
电荷转移
title P‐4.6: Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P%E2%80%904.6:%20Band%20Structure%20Engineering%20of%20Interfacial%20Semiconductors%20Based%20on%20Atomically%20Thin%20Lead%20Iodide%20Crystals&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=%E5%AD%99%E7%A0%94&rft.date=2019-09&rft.volume=50&rft.issue=S1&rft.spage=714&rft.epage=715&rft.pages=714-715&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.13621&rft_dat=%3Cproquest_cross%3E2300542148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1051-a2835186fdd44ba7ee4dc53527c2b803e4a9ae6e39b26c6ab4fe161f9d189ff03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300542148&rft_id=info:pmid/&rfr_iscdi=true