Loading…
Wide band-gap organic molecules containing benzodithiophene and difluoroquinoxaline derivatives for solar cell applications
Two new semiconducting organic small molecules, namely BDTQ-BDT(EH) and BDTQ-BDT(OC), were prepared by attaching electron accepting 2,3-didodecyl-6,7-difluoro-5,8-di(thiophen-2-yl)quinoxaline (DTQ) unit on 2,6-position of electron donating 4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene...
Saved in:
Published in: | Molecular Crystals and Liquid Crystals 2019-05, Vol.685 (1), p.29-39 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two new semiconducting organic small molecules, namely BDTQ-BDT(EH) and BDTQ-BDT(OC), were prepared by attaching electron accepting 2,3-didodecyl-6,7-difluoro-5,8-di(thiophen-2-yl)quinoxaline (DTQ) unit on 2,6-position of electron donating 4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (BDT(EH)) and 4,8-bis(octyloxy)benzo[1,2-b:4,5-b']dithiophene (BDT(OC)) units. Molecule BDTQ-BDT(EH) showed higher thermal stability (5% weight loss temperature, T
d
"349
о
C), slightly lower band-gap (E
g
"2.10 eV) and deeper highest occupied molecular orbital energy level (HOMO "-5.36 eV) level compared to those (T
d
"336
о
C, E
g
"2.11 eV, and HOMO "-5.30 eV, respectively.) of the molecule BDTQ-BDT(OC). The organic solar cells (OSCs) made with the synthesized molecules as an electron donor and [6,6]-phenyl C
71
butyric acid methyl ester (PC
70
BM) as an electron acceptor gave a maximum power conversion efficiency (PCE) of 1.20% and 0.83%, respectively, for BDTQ-BDT(EH) and BDTQ-BDT(OC). This study confirmed that the substituents attached on the 4,8-position of BDT unit greatly alter the properties of the resulting molecules. |
---|---|
ISSN: | 1542-1406 1563-5287 1527-1943 |
DOI: | 10.1080/15421406.2019.1645458 |