Loading…

The NIST eutectic project: construction of Co–C, Pt–C and Re–C fixed-point cells and their comparison with the NMIJ

The National Institute of Standards and Technology (NIST) has initiated a project on novel high-temperature fixed-points by use of metal (carbide)-carbon eutectics to lower uncertainties in thermodynamic temperature measurement. As the first stage of the NIST eutectic project, a comparison of Co-C,...

Full description

Saved in:
Bibliographic Details
Published in:Metrologia 2006-04, Vol.43 (2), p.S109-S114
Main Authors: Sasajima, N, Yoon, H W, Gibson, C E, Khromchenko, V, Sakuma, F, Yamada, Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-c9099101b0609c78c0db017ce4feb19cb4eb5666fbe30e2e69134fb4c474a8893
cites cdi_FETCH-LOGICAL-c378t-c9099101b0609c78c0db017ce4feb19cb4eb5666fbe30e2e69134fb4c474a8893
container_end_page S114
container_issue 2
container_start_page S109
container_title Metrologia
container_volume 43
creator Sasajima, N
Yoon, H W
Gibson, C E
Khromchenko, V
Sakuma, F
Yamada, Y
description The National Institute of Standards and Technology (NIST) has initiated a project on novel high-temperature fixed-points by use of metal (carbide)-carbon eutectics to lower uncertainties in thermodynamic temperature measurement. As the first stage of the NIST eutectic project, a comparison of Co-C, Pt-C and Re-C eutectic fixed-point cells was conducted between the NIST and the National Metrology Institute of Japan (NMIJ) at the NIST to verify the quality of the NIST eutectic cells in addition to checking for possible furnace and radiation thermometer effects on the eutectic fixed-point realizations. In the comparison, two high-temperature furnaces, two radiation thermometers and one gold-point blackbody were used. A Nagano M furnace and a Linear Pyrometer 3 radiation thermometer were transferred from NMIJ and were used in conjunction with a Thermo Gauge furnace and an Absolute Pyrometer 1 radiation thermometer of NIST to check the dependence on the measurement equipment. The results showed that Co-C cells agreed to 73 mK. The melting temperature of the NIST Pt-C cell was approximately 270 mK lower than that of the NMIJ cell, with a comparison uncertainty of roughly 110 mK (k = 2), due to the poor purity of Pt powder. Although the Re-C comparison showed instability of the comparison system, they agreed within 100 mK. Though further improvement is necessary for the Pt-C cell, such as the use of higher purity Pt, the filling and measuring technique has been established at the NIST. [PUBLICATION ABSTRACT]
doi_str_mv 10.1088/0026-1394/43/2/S22
format article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_journals_230067564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1030334831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c9099101b0609c78c0db017ce4feb19cb4eb5666fbe30e2e69134fb4c474a8893</originalsourceid><addsrcrecordid>eNqNkc9OGzEQxq0KpAboC_Rk9VJV6hL_W3vdWxUVCAJalfRs7TqziqNkvdhetdx4B96QJ8FLUA9w4TSjmd98-mYGoY-UHFNSVVNCmCwo12Iq-JRNrxl7hyZUVrRQpSr30OQ_8B4dxLgmhCpWqgm6XawAX82vFxiGBDY5i_vg1zn7hq3vYgpDLvoO-xbP_MPd_ewr_pXGiOtuiX_DU9q6f7Aseu-6hC1sNvGpmVbgQlbZ9nVwMWv8dWk1VvHV5fz8CO239SbCh-d4iP6c_FjMzoqLn6fz2feLwnJVpcJqojUltCGSaKsqS5ZNNm9BtNBQbRsBTSmlbBvgBBhITbloG2GFEnVVaX6IPu908143A8Rkti6OJusO_BCNErwkmvMyk59ekGs_hC6bM4wTIlUpRYbYDrLBxxigNX1w2zrcGkrM-AszntqMpzaCG2byL_JQsRtyvn8b_-U1_5oz_bLljy7GmFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230067564</pqid></control><display><type>article</type><title>The NIST eutectic project: construction of Co–C, Pt–C and Re–C fixed-point cells and their comparison with the NMIJ</title><source>Institute of Physics</source><creator>Sasajima, N ; Yoon, H W ; Gibson, C E ; Khromchenko, V ; Sakuma, F ; Yamada, Y</creator><creatorcontrib>Sasajima, N ; Yoon, H W ; Gibson, C E ; Khromchenko, V ; Sakuma, F ; Yamada, Y</creatorcontrib><description>The National Institute of Standards and Technology (NIST) has initiated a project on novel high-temperature fixed-points by use of metal (carbide)-carbon eutectics to lower uncertainties in thermodynamic temperature measurement. As the first stage of the NIST eutectic project, a comparison of Co-C, Pt-C and Re-C eutectic fixed-point cells was conducted between the NIST and the National Metrology Institute of Japan (NMIJ) at the NIST to verify the quality of the NIST eutectic cells in addition to checking for possible furnace and radiation thermometer effects on the eutectic fixed-point realizations. In the comparison, two high-temperature furnaces, two radiation thermometers and one gold-point blackbody were used. A Nagano M furnace and a Linear Pyrometer 3 radiation thermometer were transferred from NMIJ and were used in conjunction with a Thermo Gauge furnace and an Absolute Pyrometer 1 radiation thermometer of NIST to check the dependence on the measurement equipment. The results showed that Co-C cells agreed to 73 mK. The melting temperature of the NIST Pt-C cell was approximately 270 mK lower than that of the NMIJ cell, with a comparison uncertainty of roughly 110 mK (k = 2), due to the poor purity of Pt powder. Although the Re-C comparison showed instability of the comparison system, they agreed within 100 mK. Though further improvement is necessary for the Pt-C cell, such as the use of higher purity Pt, the filling and measuring technique has been established at the NIST. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0026-1394</identifier><identifier>EISSN: 1681-7575</identifier><identifier>DOI: 10.1088/0026-1394/43/2/S22</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cells ; Comparative analysis ; Eutectics ; High temperature ; Measurement techniques ; Radiation</subject><ispartof>Metrologia, 2006-04, Vol.43 (2), p.S109-S114</ispartof><rights>Copyright Bureau International des Poids et Mesures Apr 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-c9099101b0609c78c0db017ce4feb19cb4eb5666fbe30e2e69134fb4c474a8893</citedby><cites>FETCH-LOGICAL-c378t-c9099101b0609c78c0db017ce4feb19cb4eb5666fbe30e2e69134fb4c474a8893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Sasajima, N</creatorcontrib><creatorcontrib>Yoon, H W</creatorcontrib><creatorcontrib>Gibson, C E</creatorcontrib><creatorcontrib>Khromchenko, V</creatorcontrib><creatorcontrib>Sakuma, F</creatorcontrib><creatorcontrib>Yamada, Y</creatorcontrib><title>The NIST eutectic project: construction of Co–C, Pt–C and Re–C fixed-point cells and their comparison with the NMIJ</title><title>Metrologia</title><description>The National Institute of Standards and Technology (NIST) has initiated a project on novel high-temperature fixed-points by use of metal (carbide)-carbon eutectics to lower uncertainties in thermodynamic temperature measurement. As the first stage of the NIST eutectic project, a comparison of Co-C, Pt-C and Re-C eutectic fixed-point cells was conducted between the NIST and the National Metrology Institute of Japan (NMIJ) at the NIST to verify the quality of the NIST eutectic cells in addition to checking for possible furnace and radiation thermometer effects on the eutectic fixed-point realizations. In the comparison, two high-temperature furnaces, two radiation thermometers and one gold-point blackbody were used. A Nagano M furnace and a Linear Pyrometer 3 radiation thermometer were transferred from NMIJ and were used in conjunction with a Thermo Gauge furnace and an Absolute Pyrometer 1 radiation thermometer of NIST to check the dependence on the measurement equipment. The results showed that Co-C cells agreed to 73 mK. The melting temperature of the NIST Pt-C cell was approximately 270 mK lower than that of the NMIJ cell, with a comparison uncertainty of roughly 110 mK (k = 2), due to the poor purity of Pt powder. Although the Re-C comparison showed instability of the comparison system, they agreed within 100 mK. Though further improvement is necessary for the Pt-C cell, such as the use of higher purity Pt, the filling and measuring technique has been established at the NIST. [PUBLICATION ABSTRACT]</description><subject>Cells</subject><subject>Comparative analysis</subject><subject>Eutectics</subject><subject>High temperature</subject><subject>Measurement techniques</subject><subject>Radiation</subject><issn>0026-1394</issn><issn>1681-7575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkc9OGzEQxq0KpAboC_Rk9VJV6hL_W3vdWxUVCAJalfRs7TqziqNkvdhetdx4B96QJ8FLUA9w4TSjmd98-mYGoY-UHFNSVVNCmCwo12Iq-JRNrxl7hyZUVrRQpSr30OQ_8B4dxLgmhCpWqgm6XawAX82vFxiGBDY5i_vg1zn7hq3vYgpDLvoO-xbP_MPd_ewr_pXGiOtuiX_DU9q6f7Aseu-6hC1sNvGpmVbgQlbZ9nVwMWv8dWk1VvHV5fz8CO239SbCh-d4iP6c_FjMzoqLn6fz2feLwnJVpcJqojUltCGSaKsqS5ZNNm9BtNBQbRsBTSmlbBvgBBhITbloG2GFEnVVaX6IPu908143A8Rkti6OJusO_BCNErwkmvMyk59ekGs_hC6bM4wTIlUpRYbYDrLBxxigNX1w2zrcGkrM-AszntqMpzaCG2byL_JQsRtyvn8b_-U1_5oz_bLljy7GmFg</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Sasajima, N</creator><creator>Yoon, H W</creator><creator>Gibson, C E</creator><creator>Khromchenko, V</creator><creator>Sakuma, F</creator><creator>Yamada, Y</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060401</creationdate><title>The NIST eutectic project: construction of Co–C, Pt–C and Re–C fixed-point cells and their comparison with the NMIJ</title><author>Sasajima, N ; Yoon, H W ; Gibson, C E ; Khromchenko, V ; Sakuma, F ; Yamada, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c9099101b0609c78c0db017ce4feb19cb4eb5666fbe30e2e69134fb4c474a8893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cells</topic><topic>Comparative analysis</topic><topic>Eutectics</topic><topic>High temperature</topic><topic>Measurement techniques</topic><topic>Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasajima, N</creatorcontrib><creatorcontrib>Yoon, H W</creatorcontrib><creatorcontrib>Gibson, C E</creatorcontrib><creatorcontrib>Khromchenko, V</creatorcontrib><creatorcontrib>Sakuma, F</creatorcontrib><creatorcontrib>Yamada, Y</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Metrologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasajima, N</au><au>Yoon, H W</au><au>Gibson, C E</au><au>Khromchenko, V</au><au>Sakuma, F</au><au>Yamada, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NIST eutectic project: construction of Co–C, Pt–C and Re–C fixed-point cells and their comparison with the NMIJ</atitle><jtitle>Metrologia</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>43</volume><issue>2</issue><spage>S109</spage><epage>S114</epage><pages>S109-S114</pages><issn>0026-1394</issn><eissn>1681-7575</eissn><abstract>The National Institute of Standards and Technology (NIST) has initiated a project on novel high-temperature fixed-points by use of metal (carbide)-carbon eutectics to lower uncertainties in thermodynamic temperature measurement. As the first stage of the NIST eutectic project, a comparison of Co-C, Pt-C and Re-C eutectic fixed-point cells was conducted between the NIST and the National Metrology Institute of Japan (NMIJ) at the NIST to verify the quality of the NIST eutectic cells in addition to checking for possible furnace and radiation thermometer effects on the eutectic fixed-point realizations. In the comparison, two high-temperature furnaces, two radiation thermometers and one gold-point blackbody were used. A Nagano M furnace and a Linear Pyrometer 3 radiation thermometer were transferred from NMIJ and were used in conjunction with a Thermo Gauge furnace and an Absolute Pyrometer 1 radiation thermometer of NIST to check the dependence on the measurement equipment. The results showed that Co-C cells agreed to 73 mK. The melting temperature of the NIST Pt-C cell was approximately 270 mK lower than that of the NMIJ cell, with a comparison uncertainty of roughly 110 mK (k = 2), due to the poor purity of Pt powder. Although the Re-C comparison showed instability of the comparison system, they agreed within 100 mK. Though further improvement is necessary for the Pt-C cell, such as the use of higher purity Pt, the filling and measuring technique has been established at the NIST. [PUBLICATION ABSTRACT]</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0026-1394/43/2/S22</doi></addata></record>
fulltext fulltext
identifier ISSN: 0026-1394
ispartof Metrologia, 2006-04, Vol.43 (2), p.S109-S114
issn 0026-1394
1681-7575
language eng
recordid cdi_proquest_journals_230067564
source Institute of Physics
subjects Cells
Comparative analysis
Eutectics
High temperature
Measurement techniques
Radiation
title The NIST eutectic project: construction of Co–C, Pt–C and Re–C fixed-point cells and their comparison with the NMIJ
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NIST%20eutectic%20project:%20construction%20of%20Co%E2%80%93C,%20Pt%E2%80%93C%20and%20Re%E2%80%93C%20fixed-point%20cells%20and%20their%20comparison%20with%20the%20NMIJ&rft.jtitle=Metrologia&rft.au=Sasajima,%20N&rft.date=2006-04-01&rft.volume=43&rft.issue=2&rft.spage=S109&rft.epage=S114&rft.pages=S109-S114&rft.issn=0026-1394&rft.eissn=1681-7575&rft_id=info:doi/10.1088/0026-1394/43/2/S22&rft_dat=%3Cproquest_iop_p%3E1030334831%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-c9099101b0609c78c0db017ce4feb19cb4eb5666fbe30e2e69134fb4c474a8893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230067564&rft_id=info:pmid/&rfr_iscdi=true