Loading…
Rho kinase regulates renal blood flow by modulating eNOS activity in ischemia-reperfusion of the rat kidney
Renal ischemia-reperfusion (I/R) results in vascular dysfunction characterized by a reduced endothelium-dependent vasodilatation and subsequently impaired blood flow. In this study, we investigated the role of Rho kinase in endothelial nitric oxide synthase (eNOS)-mediated regulation of renal blood...
Saved in:
Published in: | American journal of physiology. Renal physiology 2006-09, Vol.291 (3), p.21 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Renal ischemia-reperfusion (I/R) results in vascular dysfunction characterized by a reduced endothelium-dependent vasodilatation and subsequently impaired blood flow. In this study, we investigated the role of Rho kinase in endothelial nitric oxide synthase (eNOS)-mediated regulation of renal blood flow and vasomotor tone in renal I/R. Male Wistar rats were subjected to 60-min bilateral clamping of the renal arteries or sham procedure. One hour before the clamping, the Rho kinase inhibitor Y27632 (1 mg/kg) was intravenously infused. After I/R, renal blood flow was measured using fluorescent microspheres. I/R resulted in a 62% decrease in renal blood flow. In contrast, the blood flow decrease in the group treated with the Rho kinase inhibitor (YI/R) was prevented. Endothelium-dependent vasodilatation of renal arcuate arteries to ACh was measured ex vivo in a pressure myograph. These experiments demonstrated that the in vivo treatment with the Rho kinase inhibitor prevented the decrease in the nitric oxide (NO)-mediated vasodilator response. In addition, after I/R renal interlobar arteries showed a decrease in phosphorylated eNOS and vasodilator-stimulated phosphoprotein, a marker for bioactive NO, which was attenuated by in vivo Rho kinase inhibition. These findings indicate that in vivo inhibition of Rho kinase in renal I/R preserves renal blood flow by improving eNOS function. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1931-857X 1522-1466 |