Loading…
C-algebras of Bergman Type Operators with Piecewise Slowly Oscillating Coefficients over Domains with Dini-Smooth Corners
Given a simply connected domain U ⊂ C with a piecewise Dini-smooth boundary ∂ U which admits a finite set of Dini-smooth corners of openings lying in ( 0 , 2 π ] , we study the C ∗ -algebra B U = { a I , B U , B ~ U : a ∈ X ( L ) } generated by the operators of multiplication by functions in X ( L )...
Saved in:
Published in: | Integral equations and operator theory 2019-10, Vol.91 (5), p.1-30, Article 47 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-3ef807285fd3c9a99a33af4f23659a4ddcb8aef3201382ad1a67b2af9e966eaa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-3ef807285fd3c9a99a33af4f23659a4ddcb8aef3201382ad1a67b2af9e966eaa3 |
container_end_page | 30 |
container_issue | 5 |
container_start_page | 1 |
container_title | Integral equations and operator theory |
container_volume | 91 |
creator | Espinoza-Loyola, Enrique Karlovich, Yuri I. |
description | Given a simply connected domain
U
⊂
C
with a piecewise Dini-smooth boundary
∂
U
which admits a finite set of Dini-smooth corners of openings lying in
(
0
,
2
π
]
, we study the
C
∗
-algebra
B
U
=
{
a
I
,
B
U
,
B
~
U
:
a
∈
X
(
L
)
}
generated by the operators of multiplication by functions in
X
(
L
)
, and by the Bergman projection
B
U
and anti-Bergman projection
B
~
U
acting on the Lebesgue space
L
2
(
U
)
. The
C
∗
-algebra
X
(
L
)
is generated by all piecewise continuous functions on the closure
U
¯
of
U
with discontinuities on a finite union
L
of piecewise Dini-smooth curves that have one-sided tangents at every point, do not form cusps and are not tangent to
∂
U
at the points of
L
∩
∂
U
, and by all bounded continuous functions on
U
that slowly oscillate at points of
∂
U
. Making use of the Allan-Douglas local principle, the limit operators techniques and the Kehe Zhu results on the class
Q
=
V
M
O
∂
(
D
)
∩
L
∞
(
D
)
, a Fredholm symbol calculus for the
C
∗
-algebra
B
U
is constructed and a Fredholm criterion for the operators
A
∈
B
U
is obtained. |
doi_str_mv | 10.1007/s00020-019-2545-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300965760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300965760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3ef807285fd3c9a99a33af4f23659a4ddcb8aef3201382ad1a67b2af9e966eaa3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeA52g-utnNUbd-QaGCCt7CdDupKdtNTVZL_fWmtODJ0wzD874DDyEXgl8JzsvrxDmXnHFhmCyGBfs5IAMxzJfKVOaQDLgqK6Ylfz8mJyktMixLqQdkUzNo5ziNkGhw9BbjfAkdfd2skE5WGKEPMdG17z_os8cG1z4hfWnDut3QSWp820LvuzmtAzrnG49dn4u-MdJRWILv9tmR7zx7WYaQ9zrEDmM6I0cO2oTn-3lK3u7vXutHNp48PNU3Y9YooXum0FW8lFXhZqoxYAwoBW7opNKFgeFs1kwrQKckF6qSMBOgy6kEZ9BojQDqlFzuelcxfH5h6u0ifMUuv7RScW50UWqeKbGjmhhSiujsKvolxI0V3G4N251hmw3brWH7kzNyl0mZ7eYY_5r_D_0CZZKA9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300965760</pqid></control><display><type>article</type><title>C-algebras of Bergman Type Operators with Piecewise Slowly Oscillating Coefficients over Domains with Dini-Smooth Corners</title><source>Springer Nature</source><creator>Espinoza-Loyola, Enrique ; Karlovich, Yuri I.</creator><creatorcontrib>Espinoza-Loyola, Enrique ; Karlovich, Yuri I.</creatorcontrib><description>Given a simply connected domain
U
⊂
C
with a piecewise Dini-smooth boundary
∂
U
which admits a finite set of Dini-smooth corners of openings lying in
(
0
,
2
π
]
, we study the
C
∗
-algebra
B
U
=
{
a
I
,
B
U
,
B
~
U
:
a
∈
X
(
L
)
}
generated by the operators of multiplication by functions in
X
(
L
)
, and by the Bergman projection
B
U
and anti-Bergman projection
B
~
U
acting on the Lebesgue space
L
2
(
U
)
. The
C
∗
-algebra
X
(
L
)
is generated by all piecewise continuous functions on the closure
U
¯
of
U
with discontinuities on a finite union
L
of piecewise Dini-smooth curves that have one-sided tangents at every point, do not form cusps and are not tangent to
∂
U
at the points of
L
∩
∂
U
, and by all bounded continuous functions on
U
that slowly oscillate at points of
∂
U
. Making use of the Allan-Douglas local principle, the limit operators techniques and the Kehe Zhu results on the class
Q
=
V
M
O
∂
(
D
)
∩
L
∞
(
D
)
, a Fredholm symbol calculus for the
C
∗
-algebra
B
U
is constructed and a Fredholm criterion for the operators
A
∈
B
U
is obtained.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-019-2545-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Continuity (mathematics) ; Corners ; Domains ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Multiplication ; Operators (mathematics) ; Smooth boundaries ; Tangents</subject><ispartof>Integral equations and operator theory, 2019-10, Vol.91 (5), p.1-30, Article 47</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3ef807285fd3c9a99a33af4f23659a4ddcb8aef3201382ad1a67b2af9e966eaa3</citedby><cites>FETCH-LOGICAL-c316t-3ef807285fd3c9a99a33af4f23659a4ddcb8aef3201382ad1a67b2af9e966eaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Espinoza-Loyola, Enrique</creatorcontrib><creatorcontrib>Karlovich, Yuri I.</creatorcontrib><title>C-algebras of Bergman Type Operators with Piecewise Slowly Oscillating Coefficients over Domains with Dini-Smooth Corners</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>Given a simply connected domain
U
⊂
C
with a piecewise Dini-smooth boundary
∂
U
which admits a finite set of Dini-smooth corners of openings lying in
(
0
,
2
π
]
, we study the
C
∗
-algebra
B
U
=
{
a
I
,
B
U
,
B
~
U
:
a
∈
X
(
L
)
}
generated by the operators of multiplication by functions in
X
(
L
)
, and by the Bergman projection
B
U
and anti-Bergman projection
B
~
U
acting on the Lebesgue space
L
2
(
U
)
. The
C
∗
-algebra
X
(
L
)
is generated by all piecewise continuous functions on the closure
U
¯
of
U
with discontinuities on a finite union
L
of piecewise Dini-smooth curves that have one-sided tangents at every point, do not form cusps and are not tangent to
∂
U
at the points of
L
∩
∂
U
, and by all bounded continuous functions on
U
that slowly oscillate at points of
∂
U
. Making use of the Allan-Douglas local principle, the limit operators techniques and the Kehe Zhu results on the class
Q
=
V
M
O
∂
(
D
)
∩
L
∞
(
D
)
, a Fredholm symbol calculus for the
C
∗
-algebra
B
U
is constructed and a Fredholm criterion for the operators
A
∈
B
U
is obtained.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Continuity (mathematics)</subject><subject>Corners</subject><subject>Domains</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiplication</subject><subject>Operators (mathematics)</subject><subject>Smooth boundaries</subject><subject>Tangents</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLeA52g-utnNUbd-QaGCCt7CdDupKdtNTVZL_fWmtODJ0wzD874DDyEXgl8JzsvrxDmXnHFhmCyGBfs5IAMxzJfKVOaQDLgqK6Ylfz8mJyktMixLqQdkUzNo5ziNkGhw9BbjfAkdfd2skE5WGKEPMdG17z_os8cG1z4hfWnDut3QSWp820LvuzmtAzrnG49dn4u-MdJRWILv9tmR7zx7WYaQ9zrEDmM6I0cO2oTn-3lK3u7vXutHNp48PNU3Y9YooXum0FW8lFXhZqoxYAwoBW7opNKFgeFs1kwrQKckF6qSMBOgy6kEZ9BojQDqlFzuelcxfH5h6u0ifMUuv7RScW50UWqeKbGjmhhSiujsKvolxI0V3G4N251hmw3brWH7kzNyl0mZ7eYY_5r_D_0CZZKA9w</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Espinoza-Loyola, Enrique</creator><creator>Karlovich, Yuri I.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>C-algebras of Bergman Type Operators with Piecewise Slowly Oscillating Coefficients over Domains with Dini-Smooth Corners</title><author>Espinoza-Loyola, Enrique ; Karlovich, Yuri I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3ef807285fd3c9a99a33af4f23659a4ddcb8aef3201382ad1a67b2af9e966eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Continuity (mathematics)</topic><topic>Corners</topic><topic>Domains</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiplication</topic><topic>Operators (mathematics)</topic><topic>Smooth boundaries</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinoza-Loyola, Enrique</creatorcontrib><creatorcontrib>Karlovich, Yuri I.</creatorcontrib><collection>CrossRef</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinoza-Loyola, Enrique</au><au>Karlovich, Yuri I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C-algebras of Bergman Type Operators with Piecewise Slowly Oscillating Coefficients over Domains with Dini-Smooth Corners</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>91</volume><issue>5</issue><spage>1</spage><epage>30</epage><pages>1-30</pages><artnum>47</artnum><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>Given a simply connected domain
U
⊂
C
with a piecewise Dini-smooth boundary
∂
U
which admits a finite set of Dini-smooth corners of openings lying in
(
0
,
2
π
]
, we study the
C
∗
-algebra
B
U
=
{
a
I
,
B
U
,
B
~
U
:
a
∈
X
(
L
)
}
generated by the operators of multiplication by functions in
X
(
L
)
, and by the Bergman projection
B
U
and anti-Bergman projection
B
~
U
acting on the Lebesgue space
L
2
(
U
)
. The
C
∗
-algebra
X
(
L
)
is generated by all piecewise continuous functions on the closure
U
¯
of
U
with discontinuities on a finite union
L
of piecewise Dini-smooth curves that have one-sided tangents at every point, do not form cusps and are not tangent to
∂
U
at the points of
L
∩
∂
U
, and by all bounded continuous functions on
U
that slowly oscillate at points of
∂
U
. Making use of the Allan-Douglas local principle, the limit operators techniques and the Kehe Zhu results on the class
Q
=
V
M
O
∂
(
D
)
∩
L
∞
(
D
)
, a Fredholm symbol calculus for the
C
∗
-algebra
B
U
is constructed and a Fredholm criterion for the operators
A
∈
B
U
is obtained.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-019-2545-z</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-620X |
ispartof | Integral equations and operator theory, 2019-10, Vol.91 (5), p.1-30, Article 47 |
issn | 0378-620X 1420-8989 |
language | eng |
recordid | cdi_proquest_journals_2300965760 |
source | Springer Nature |
subjects | Algebra Analysis Continuity (mathematics) Corners Domains Mathematical analysis Mathematics Mathematics and Statistics Multiplication Operators (mathematics) Smooth boundaries Tangents |
title | C-algebras of Bergman Type Operators with Piecewise Slowly Oscillating Coefficients over Domains with Dini-Smooth Corners |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C-algebras%20of%20Bergman%20Type%20Operators%20with%20Piecewise%20Slowly%20Oscillating%20Coefficients%20over%20Domains%20with%20Dini-Smooth%20Corners&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Espinoza-Loyola,%20Enrique&rft.date=2019-10-01&rft.volume=91&rft.issue=5&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.artnum=47&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-019-2545-z&rft_dat=%3Cproquest_cross%3E2300965760%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-3ef807285fd3c9a99a33af4f23659a4ddcb8aef3201382ad1a67b2af9e966eaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300965760&rft_id=info:pmid/&rfr_iscdi=true |