Loading…

Structural Evaluation of Slow Desorbing Sites in Model and Natural Solids Using Temperature Stepped Desorption Profiles. 1. Model Development

In the first of this two-paper series, a new model is presented that simulates the effects of a temperature perturbation on the rate of slow desorption as a function of mass remaining. The model assumes slow desorption is controlled by one-dimensional diffusion from a single or many hydrophobic micr...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2000-07, Vol.34 (14), p.2959-2965
Main Authors: Werth, Charles J, McMillan, Scott A, Castilla, Humberto J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a351t-1c35c16610316c9f50a7a787ba65512cf15221f61ec35dbee0c5a84dd62416603
cites cdi_FETCH-LOGICAL-a351t-1c35c16610316c9f50a7a787ba65512cf15221f61ec35dbee0c5a84dd62416603
container_end_page 2965
container_issue 14
container_start_page 2959
container_title Environmental science & technology
container_volume 34
creator Werth, Charles J
McMillan, Scott A
Castilla, Humberto J
description In the first of this two-paper series, a new model is presented that simulates the effects of a temperature perturbation on the rate of slow desorption as a function of mass remaining. The model assumes slow desorption is controlled by one-dimensional diffusion from a single or many hydrophobic micropores and that the micropores of a geosorbent are defined by a γ distribution of diffusion rate constants. Simulation results indicate that during slow desorption the relative increase in flux upon heating increases with decreasing micropore width. Simulation results also indicate that the relative increase in flux upon heating increases with desorption time when diffusion occurs from successively smaller width micropores with decreasing mass remaining. In paper 2, the model is tested and used to examine micropore geometry in natural and model solids by simulating results from temperature stepped desorption (TSD) experiments.
doi_str_mv 10.1021/es990429u
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_230126506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>57248419</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-1c35c16610316c9f50a7a787ba65512cf15221f61ec35dbee0c5a84dd62416603</originalsourceid><addsrcrecordid>eNplkEFP3DAQha2qSGyhB_6BVdFDD1k88dpJjtUCpRJQaBapN8vrTCqDN05tB8qP6H9utlnBoac5zPfem3mEHAGbA8vhBGNVsUVeDW_IDETOMlEKeEtmjAHPKi5_7JN3Md4zxnLOyhn5U6cwmDQE7ejZo3aDTtZ31Le0dv6JnmL0YW27n7S2CSO1Hb3yDTqqu4Ze60lXe2ebSO_illvhpsew3SCtE_Y9NpNL_8_4JvjWOoxzCvOd1Sk-ovP9Brt0SPZa7SK-380Dcnd-tlpeZJffvnxdfr7MNBeQMjBcGJASGAdpqlYwXeiiLNZaCgG5acfPc2gl4Ag2a0RmhC4XTSPzxShj_IB8mHz74H8NGJO690Poxkg11gK5FEyO0KcJMsHHGLBVfbAbHZ4VMLUtW72UPbLHO0MdjXZt0J2x8VWwKErOtrnZhNmY8PfLWocHJQteCLW6qVVZLG-vvt-WajXyHydem_h64v_xfwGcMpqF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230126506</pqid></control><display><type>article</type><title>Structural Evaluation of Slow Desorbing Sites in Model and Natural Solids Using Temperature Stepped Desorption Profiles. 1. Model Development</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Werth, Charles J ; McMillan, Scott A ; Castilla, Humberto J</creator><creatorcontrib>Werth, Charles J ; McMillan, Scott A ; Castilla, Humberto J</creatorcontrib><description>In the first of this two-paper series, a new model is presented that simulates the effects of a temperature perturbation on the rate of slow desorption as a function of mass remaining. The model assumes slow desorption is controlled by one-dimensional diffusion from a single or many hydrophobic micropores and that the micropores of a geosorbent are defined by a γ distribution of diffusion rate constants. Simulation results indicate that during slow desorption the relative increase in flux upon heating increases with decreasing micropore width. Simulation results also indicate that the relative increase in flux upon heating increases with desorption time when diffusion occurs from successively smaller width micropores with decreasing mass remaining. In paper 2, the model is tested and used to examine micropore geometry in natural and model solids by simulating results from temperature stepped desorption (TSD) experiments.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es990429u</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biological and physicochemical properties of pollutants. Interaction in the soil ; Bioremediation ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Pollution ; Pollution, environment geology ; Simulation ; Soil and sediments pollution ; Temperature</subject><ispartof>Environmental science &amp; technology, 2000-07, Vol.34 (14), p.2959-2965</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 15, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-1c35c16610316c9f50a7a787ba65512cf15221f61ec35dbee0c5a84dd62416603</citedby><cites>FETCH-LOGICAL-a351t-1c35c16610316c9f50a7a787ba65512cf15221f61ec35dbee0c5a84dd62416603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1478300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Werth, Charles J</creatorcontrib><creatorcontrib>McMillan, Scott A</creatorcontrib><creatorcontrib>Castilla, Humberto J</creatorcontrib><title>Structural Evaluation of Slow Desorbing Sites in Model and Natural Solids Using Temperature Stepped Desorption Profiles. 1. Model Development</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>In the first of this two-paper series, a new model is presented that simulates the effects of a temperature perturbation on the rate of slow desorption as a function of mass remaining. The model assumes slow desorption is controlled by one-dimensional diffusion from a single or many hydrophobic micropores and that the micropores of a geosorbent are defined by a γ distribution of diffusion rate constants. Simulation results indicate that during slow desorption the relative increase in flux upon heating increases with decreasing micropore width. Simulation results also indicate that the relative increase in flux upon heating increases with desorption time when diffusion occurs from successively smaller width micropores with decreasing mass remaining. In paper 2, the model is tested and used to examine micropore geometry in natural and model solids by simulating results from temperature stepped desorption (TSD) experiments.</description><subject>Applied sciences</subject><subject>Biological and physicochemical properties of pollutants. Interaction in the soil</subject><subject>Bioremediation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Simulation</subject><subject>Soil and sediments pollution</subject><subject>Temperature</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNplkEFP3DAQha2qSGyhB_6BVdFDD1k88dpJjtUCpRJQaBapN8vrTCqDN05tB8qP6H9utlnBoac5zPfem3mEHAGbA8vhBGNVsUVeDW_IDETOMlEKeEtmjAHPKi5_7JN3Md4zxnLOyhn5U6cwmDQE7ejZo3aDTtZ31Le0dv6JnmL0YW27n7S2CSO1Hb3yDTqqu4Ze60lXe2ebSO_illvhpsew3SCtE_Y9NpNL_8_4JvjWOoxzCvOd1Sk-ovP9Brt0SPZa7SK-380Dcnd-tlpeZJffvnxdfr7MNBeQMjBcGJASGAdpqlYwXeiiLNZaCgG5acfPc2gl4Ag2a0RmhC4XTSPzxShj_IB8mHz74H8NGJO690Poxkg11gK5FEyO0KcJMsHHGLBVfbAbHZ4VMLUtW72UPbLHO0MdjXZt0J2x8VWwKErOtrnZhNmY8PfLWocHJQteCLW6qVVZLG-vvt-WajXyHydem_h64v_xfwGcMpqF</recordid><startdate>20000715</startdate><enddate>20000715</enddate><creator>Werth, Charles J</creator><creator>McMillan, Scott A</creator><creator>Castilla, Humberto J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20000715</creationdate><title>Structural Evaluation of Slow Desorbing Sites in Model and Natural Solids Using Temperature Stepped Desorption Profiles. 1. Model Development</title><author>Werth, Charles J ; McMillan, Scott A ; Castilla, Humberto J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-1c35c16610316c9f50a7a787ba65512cf15221f61ec35dbee0c5a84dd62416603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Biological and physicochemical properties of pollutants. Interaction in the soil</topic><topic>Bioremediation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Simulation</topic><topic>Soil and sediments pollution</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Werth, Charles J</creatorcontrib><creatorcontrib>McMillan, Scott A</creatorcontrib><creatorcontrib>Castilla, Humberto J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Werth, Charles J</au><au>McMillan, Scott A</au><au>Castilla, Humberto J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Evaluation of Slow Desorbing Sites in Model and Natural Solids Using Temperature Stepped Desorption Profiles. 1. Model Development</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2000-07-15</date><risdate>2000</risdate><volume>34</volume><issue>14</issue><spage>2959</spage><epage>2965</epage><pages>2959-2965</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>In the first of this two-paper series, a new model is presented that simulates the effects of a temperature perturbation on the rate of slow desorption as a function of mass remaining. The model assumes slow desorption is controlled by one-dimensional diffusion from a single or many hydrophobic micropores and that the micropores of a geosorbent are defined by a γ distribution of diffusion rate constants. Simulation results indicate that during slow desorption the relative increase in flux upon heating increases with decreasing micropore width. Simulation results also indicate that the relative increase in flux upon heating increases with desorption time when diffusion occurs from successively smaller width micropores with decreasing mass remaining. In paper 2, the model is tested and used to examine micropore geometry in natural and model solids by simulating results from temperature stepped desorption (TSD) experiments.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/es990429u</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2000-07, Vol.34 (14), p.2959-2965
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_230126506
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Biological and physicochemical properties of pollutants. Interaction in the soil
Bioremediation
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Pollution
Pollution, environment geology
Simulation
Soil and sediments pollution
Temperature
title Structural Evaluation of Slow Desorbing Sites in Model and Natural Solids Using Temperature Stepped Desorption Profiles. 1. Model Development
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Evaluation%20of%20Slow%20Desorbing%20Sites%20in%20Model%20and%20Natural%20Solids%20Using%20Temperature%20Stepped%20Desorption%20Profiles.%201.%20Model%20Development&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Werth,%20Charles%20J&rft.date=2000-07-15&rft.volume=34&rft.issue=14&rft.spage=2959&rft.epage=2965&rft.pages=2959-2965&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es990429u&rft_dat=%3Cproquest_cross%3E57248419%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-1c35c16610316c9f50a7a787ba65512cf15221f61ec35dbee0c5a84dd62416603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230126506&rft_id=info:pmid/&rfr_iscdi=true