Loading…

Network quantile autoregression

The complex tail dependency structure in a dynamic network with a large number of nodes is an important object to study. We propose a network quantile autoregression model (NQAR), which characterizes the dynamic quantile behavior. Our NQAR model consists of a system of equations, of which we relate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2019-09, Vol.212 (1), p.345-358
Main Authors: Zhu, Xuening, Wang, Weining, Wang, Hansheng, Härdle, Wolfgang Karl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-4a5f8a3377e30d492743ec6818adb8ebba0d8faa2e2f7288cb12b288c6bedd293
cites cdi_FETCH-LOGICAL-c449t-4a5f8a3377e30d492743ec6818adb8ebba0d8faa2e2f7288cb12b288c6bedd293
container_end_page 358
container_issue 1
container_start_page 345
container_title Journal of econometrics
container_volume 212
creator Zhu, Xuening
Wang, Weining
Wang, Hansheng
Härdle, Wolfgang Karl
description The complex tail dependency structure in a dynamic network with a large number of nodes is an important object to study. We propose a network quantile autoregression model (NQAR), which characterizes the dynamic quantile behavior. Our NQAR model consists of a system of equations, of which we relate a response to its connected nodes and node specific characteristics in a quantile autoregression process. We show the estimation of the NQAR model and the asymptotic properties with assumptions on the network structure. For this propose we develop a network Bahadur representation that gives us direct insight into the parameter asymptotics. Moreover, innovative tail-event driven impulse functions are defined. Finally, we demonstrate the usage of our model by investigating the financial contagions in the Chinese stock market accounting for shared ownership of companies. We find higher network dependency when the market is exposed to a higher volatility level. ▪www.quantlet.de
doi_str_mv 10.1016/j.jeconom.2019.04.034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2301460606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407619300892</els_id><sourcerecordid>2301460606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-4a5f8a3377e30d492743ec6818adb8ebba0d8faa2e2f7288cb12b288c6bedd293</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoWEcfQRxw3XpyaZuuRAZHhUE3ug5pciqpM81M0iq-vS2dvZzFv_kvnI-QawoZBVrctVmLxnd-lzGgVQYiAy5OSEJlydJCVvkpSYCDSAWUxTm5iLEFgFxInpCbV-x_fPhaHgbd9W6LSz30PuBnwBid7y7JWaO3Ea-OuiAf68f31XO6eXt6WT1sUiNE1adC543UnJclcrCiYqXgaApJpba1xLrWYGWjNUPWlExKU1NWT1rUaC2r-ILczr374A8Dxl61fgjdOKkYByoKGG905bPLBB9jwEbtg9vp8KsoqImFatWRhZpYKBBqZDHm7uccji98OwwqGoedQesCml5Z7_5p-ANq-GoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301460606</pqid></control><display><type>article</type><title>Network quantile autoregression</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Zhu, Xuening ; Wang, Weining ; Wang, Hansheng ; Härdle, Wolfgang Karl</creator><creatorcontrib>Zhu, Xuening ; Wang, Weining ; Wang, Hansheng ; Härdle, Wolfgang Karl</creatorcontrib><description>The complex tail dependency structure in a dynamic network with a large number of nodes is an important object to study. We propose a network quantile autoregression model (NQAR), which characterizes the dynamic quantile behavior. Our NQAR model consists of a system of equations, of which we relate a response to its connected nodes and node specific characteristics in a quantile autoregression process. We show the estimation of the NQAR model and the asymptotic properties with assumptions on the network structure. For this propose we develop a network Bahadur representation that gives us direct insight into the parameter asymptotics. Moreover, innovative tail-event driven impulse functions are defined. Finally, we demonstrate the usage of our model by investigating the financial contagions in the Chinese stock market accounting for shared ownership of companies. We find higher network dependency when the market is exposed to a higher volatility level. ▪www.quantlet.de</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2019.04.034</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Autoregression ; Dependency ; Estimating techniques ; Financial contagion ; Ownership ; Quantile regression ; Regression analysis ; Securities markets ; Shared ownership ; Social network ; Systemic risk ; Volatility</subject><ispartof>Journal of econometrics, 2019-09, Vol.212 (1), p.345-358</ispartof><rights>2019</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-4a5f8a3377e30d492743ec6818adb8ebba0d8faa2e2f7288cb12b288c6bedd293</citedby><cites>FETCH-LOGICAL-c449t-4a5f8a3377e30d492743ec6818adb8ebba0d8faa2e2f7288cb12b288c6bedd293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407619300892$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,45992,46003</link.rule.ids></links><search><creatorcontrib>Zhu, Xuening</creatorcontrib><creatorcontrib>Wang, Weining</creatorcontrib><creatorcontrib>Wang, Hansheng</creatorcontrib><creatorcontrib>Härdle, Wolfgang Karl</creatorcontrib><title>Network quantile autoregression</title><title>Journal of econometrics</title><description>The complex tail dependency structure in a dynamic network with a large number of nodes is an important object to study. We propose a network quantile autoregression model (NQAR), which characterizes the dynamic quantile behavior. Our NQAR model consists of a system of equations, of which we relate a response to its connected nodes and node specific characteristics in a quantile autoregression process. We show the estimation of the NQAR model and the asymptotic properties with assumptions on the network structure. For this propose we develop a network Bahadur representation that gives us direct insight into the parameter asymptotics. Moreover, innovative tail-event driven impulse functions are defined. Finally, we demonstrate the usage of our model by investigating the financial contagions in the Chinese stock market accounting for shared ownership of companies. We find higher network dependency when the market is exposed to a higher volatility level. ▪www.quantlet.de</description><subject>Autoregression</subject><subject>Dependency</subject><subject>Estimating techniques</subject><subject>Financial contagion</subject><subject>Ownership</subject><subject>Quantile regression</subject><subject>Regression analysis</subject><subject>Securities markets</subject><subject>Shared ownership</subject><subject>Social network</subject><subject>Systemic risk</subject><subject>Volatility</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkMtKxDAUhoMoWEcfQRxw3XpyaZuuRAZHhUE3ug5pciqpM81M0iq-vS2dvZzFv_kvnI-QawoZBVrctVmLxnd-lzGgVQYiAy5OSEJlydJCVvkpSYCDSAWUxTm5iLEFgFxInpCbV-x_fPhaHgbd9W6LSz30PuBnwBid7y7JWaO3Ea-OuiAf68f31XO6eXt6WT1sUiNE1adC543UnJclcrCiYqXgaApJpba1xLrWYGWjNUPWlExKU1NWT1rUaC2r-ILczr374A8Dxl61fgjdOKkYByoKGG905bPLBB9jwEbtg9vp8KsoqImFatWRhZpYKBBqZDHm7uccji98OwwqGoedQesCml5Z7_5p-ANq-GoT</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zhu, Xuening</creator><creator>Wang, Weining</creator><creator>Wang, Hansheng</creator><creator>Härdle, Wolfgang Karl</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20190901</creationdate><title>Network quantile autoregression</title><author>Zhu, Xuening ; Wang, Weining ; Wang, Hansheng ; Härdle, Wolfgang Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-4a5f8a3377e30d492743ec6818adb8ebba0d8faa2e2f7288cb12b288c6bedd293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoregression</topic><topic>Dependency</topic><topic>Estimating techniques</topic><topic>Financial contagion</topic><topic>Ownership</topic><topic>Quantile regression</topic><topic>Regression analysis</topic><topic>Securities markets</topic><topic>Shared ownership</topic><topic>Social network</topic><topic>Systemic risk</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xuening</creatorcontrib><creatorcontrib>Wang, Weining</creatorcontrib><creatorcontrib>Wang, Hansheng</creatorcontrib><creatorcontrib>Härdle, Wolfgang Karl</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xuening</au><au>Wang, Weining</au><au>Wang, Hansheng</au><au>Härdle, Wolfgang Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network quantile autoregression</atitle><jtitle>Journal of econometrics</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>212</volume><issue>1</issue><spage>345</spage><epage>358</epage><pages>345-358</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>The complex tail dependency structure in a dynamic network with a large number of nodes is an important object to study. We propose a network quantile autoregression model (NQAR), which characterizes the dynamic quantile behavior. Our NQAR model consists of a system of equations, of which we relate a response to its connected nodes and node specific characteristics in a quantile autoregression process. We show the estimation of the NQAR model and the asymptotic properties with assumptions on the network structure. For this propose we develop a network Bahadur representation that gives us direct insight into the parameter asymptotics. Moreover, innovative tail-event driven impulse functions are defined. Finally, we demonstrate the usage of our model by investigating the financial contagions in the Chinese stock market accounting for shared ownership of companies. We find higher network dependency when the market is exposed to a higher volatility level. ▪www.quantlet.de</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2019.04.034</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2019-09, Vol.212 (1), p.345-358
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2301460606
source International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Autoregression
Dependency
Estimating techniques
Financial contagion
Ownership
Quantile regression
Regression analysis
Securities markets
Shared ownership
Social network
Systemic risk
Volatility
title Network quantile autoregression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20quantile%20autoregression&rft.jtitle=Journal%20of%20econometrics&rft.au=Zhu,%20Xuening&rft.date=2019-09-01&rft.volume=212&rft.issue=1&rft.spage=345&rft.epage=358&rft.pages=345-358&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2019.04.034&rft_dat=%3Cproquest_cross%3E2301460606%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-4a5f8a3377e30d492743ec6818adb8ebba0d8faa2e2f7288cb12b288c6bedd293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301460606&rft_id=info:pmid/&rfr_iscdi=true