Loading…
Birefringent anti-resonant hollow-core fiber
Hollow-core fibers have demonstrated record performance in applications such as high-power pulse delivery, quantum computing, and sensing. However, their routine use is yet to become reality. A major obstacle is the ability to maintain the polarization state of light over a broad range of wavelength...
Saved in:
Published in: | arXiv.org 2019-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hollow-core fibers have demonstrated record performance in applications such as high-power pulse delivery, quantum computing, and sensing. However, their routine use is yet to become reality. A major obstacle is the ability to maintain the polarization state of light over a broad range of wavelengths, while also ensuring low attenuation and single-mode guidance. Here we simulated, fabricated and characterized a single-mode polarization-maintaining anti-resonant hollow-core fiber. The birefringence was achieved by introducing resonators of different thicknesses, thereby creating reduced symmetry in the structure. The measured group birefringence of 4.4x10-5 at 1550 nm is in good agreement with the calculated group birefringence from the simulations. This corresponds to a phase birefringence of 2.5x10-5 at 1550 nm. The measured loss of the fiber was 0.46 dB/m at 1550 nm. With its simple structure, low loss, and broadband operation this polarization-maintaining anti-resonant hollow-core fiber is a serious contender for applications in gas-based nonlinear optics and communications. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1910.01906 |