Loading…
Machine learning strategies for path-planning microswimmers in turbulent flows
We develop an adversarial-reinforcement learning scheme for microswimmers in statistically homogeneous and isotropic turbulent fluid flows, in both two (2D) and three dimensions (3D). We show that this scheme allows microswimmers to find non-trivial paths, which enable them to reach a target on aver...
Saved in:
Published in: | arXiv.org 2021-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alageshan, Jaya Kumar Verma, Akhilesh Kumar Bec, Jérémie Pandit, Rahul |
description | We develop an adversarial-reinforcement learning scheme for microswimmers in statistically homogeneous and isotropic turbulent fluid flows, in both two (2D) and three dimensions (3D). We show that this scheme allows microswimmers to find non-trivial paths, which enable them to reach a target on average in less time than a naive microswimmer, which tries, at any instant of time and at a given position in space, to swim in the direction of the target. We use pseudospectral direct numerical simulations (DNSs) of the 2D and 3D (incompressible) Navier-Stokes equations to obtain the turbulent flows. We then introduce passive microswimmers that try to swim along a given direction in these flows; the microswimmers do not affect the flow, but they are advected by it. |
doi_str_mv | 10.48550/arxiv.1910.01728 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2301668690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301668690</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-69b08019c493bebcb9e5e6951dbe8938c7c959cd26c76f3df2ac1a04420193dd3</originalsourceid><addsrcrecordid>eNotjV1LwzAYhYMgOOZ-gHcBrzvfJE2aXMrwC6be7H6k6dsto01rkjp_vkV3deA8nOcQcsdgXWop4cHGH_-9ZmYugFVcX5EFF4IVuuT8hqxSOgEAVxWXUizIx7t1Rx-Qdmhj8OFAU44248Fjou0Q6WjzsRg7G_5g710c0tn3PcZEfaB5ivXUYci07YZzuiXXre0Sri65JLvnp93mtdh-vrxtHreFlRwKZWrQwIwrjaixdrVBicpI1tSojdCuckYa13DlKtWKpuXWMQtlyeeRaBqxJPf_2jEOXxOmvD8NUwzz454LYEppZUD8AhcKURA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301668690</pqid></control><display><type>article</type><title>Machine learning strategies for path-planning microswimmers in turbulent flows</title><source>Publicly Available Content Database</source><creator>Alageshan, Jaya Kumar ; Verma, Akhilesh Kumar ; Bec, Jérémie ; Pandit, Rahul</creator><creatorcontrib>Alageshan, Jaya Kumar ; Verma, Akhilesh Kumar ; Bec, Jérémie ; Pandit, Rahul</creatorcontrib><description>We develop an adversarial-reinforcement learning scheme for microswimmers in statistically homogeneous and isotropic turbulent fluid flows, in both two (2D) and three dimensions (3D). We show that this scheme allows microswimmers to find non-trivial paths, which enable them to reach a target on average in less time than a naive microswimmer, which tries, at any instant of time and at a given position in space, to swim in the direction of the target. We use pseudospectral direct numerical simulations (DNSs) of the 2D and 3D (incompressible) Navier-Stokes equations to obtain the turbulent flows. We then introduce passive microswimmers that try to swim along a given direction in these flows; the microswimmers do not affect the flow, but they are advected by it.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1910.01728</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational fluid dynamics ; Computer simulation ; Fluid flow ; Incompressible flow ; Machine learning ; Path planning ; Response time ; Vorticity</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2301668690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Alageshan, Jaya Kumar</creatorcontrib><creatorcontrib>Verma, Akhilesh Kumar</creatorcontrib><creatorcontrib>Bec, Jérémie</creatorcontrib><creatorcontrib>Pandit, Rahul</creatorcontrib><title>Machine learning strategies for path-planning microswimmers in turbulent flows</title><title>arXiv.org</title><description>We develop an adversarial-reinforcement learning scheme for microswimmers in statistically homogeneous and isotropic turbulent fluid flows, in both two (2D) and three dimensions (3D). We show that this scheme allows microswimmers to find non-trivial paths, which enable them to reach a target on average in less time than a naive microswimmer, which tries, at any instant of time and at a given position in space, to swim in the direction of the target. We use pseudospectral direct numerical simulations (DNSs) of the 2D and 3D (incompressible) Navier-Stokes equations to obtain the turbulent flows. We then introduce passive microswimmers that try to swim along a given direction in these flows; the microswimmers do not affect the flow, but they are advected by it.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Machine learning</subject><subject>Path planning</subject><subject>Response time</subject><subject>Vorticity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAYhYMgOOZ-gHcBrzvfJE2aXMrwC6be7H6k6dsto01rkjp_vkV3deA8nOcQcsdgXWop4cHGH_-9ZmYugFVcX5EFF4IVuuT8hqxSOgEAVxWXUizIx7t1Rx-Qdmhj8OFAU44248Fjou0Q6WjzsRg7G_5g710c0tn3PcZEfaB5ivXUYci07YZzuiXXre0Sri65JLvnp93mtdh-vrxtHreFlRwKZWrQwIwrjaixdrVBicpI1tSojdCuckYa13DlKtWKpuXWMQtlyeeRaBqxJPf_2jEOXxOmvD8NUwzz454LYEppZUD8AhcKURA</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Alageshan, Jaya Kumar</creator><creator>Verma, Akhilesh Kumar</creator><creator>Bec, Jérémie</creator><creator>Pandit, Rahul</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210507</creationdate><title>Machine learning strategies for path-planning microswimmers in turbulent flows</title><author>Alageshan, Jaya Kumar ; Verma, Akhilesh Kumar ; Bec, Jérémie ; Pandit, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-69b08019c493bebcb9e5e6951dbe8938c7c959cd26c76f3df2ac1a04420193dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Machine learning</topic><topic>Path planning</topic><topic>Response time</topic><topic>Vorticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Alageshan, Jaya Kumar</creatorcontrib><creatorcontrib>Verma, Akhilesh Kumar</creatorcontrib><creatorcontrib>Bec, Jérémie</creatorcontrib><creatorcontrib>Pandit, Rahul</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alageshan, Jaya Kumar</au><au>Verma, Akhilesh Kumar</au><au>Bec, Jérémie</au><au>Pandit, Rahul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning strategies for path-planning microswimmers in turbulent flows</atitle><jtitle>arXiv.org</jtitle><date>2021-05-07</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We develop an adversarial-reinforcement learning scheme for microswimmers in statistically homogeneous and isotropic turbulent fluid flows, in both two (2D) and three dimensions (3D). We show that this scheme allows microswimmers to find non-trivial paths, which enable them to reach a target on average in less time than a naive microswimmer, which tries, at any instant of time and at a given position in space, to swim in the direction of the target. We use pseudospectral direct numerical simulations (DNSs) of the 2D and 3D (incompressible) Navier-Stokes equations to obtain the turbulent flows. We then introduce passive microswimmers that try to swim along a given direction in these flows; the microswimmers do not affect the flow, but they are advected by it.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1910.01728</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2301668690 |
source | Publicly Available Content Database |
subjects | Computational fluid dynamics Computer simulation Fluid flow Incompressible flow Machine learning Path planning Response time Vorticity |
title | Machine learning strategies for path-planning microswimmers in turbulent flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20strategies%20for%20path-planning%20microswimmers%20in%20turbulent%20flows&rft.jtitle=arXiv.org&rft.au=Alageshan,%20Jaya%20Kumar&rft.date=2021-05-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1910.01728&rft_dat=%3Cproquest%3E2301668690%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-69b08019c493bebcb9e5e6951dbe8938c7c959cd26c76f3df2ac1a04420193dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301668690&rft_id=info:pmid/&rfr_iscdi=true |