Loading…
Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system
The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stabi...
Saved in:
Published in: | Asian journal of control 2019-07, Vol.21 (4), p.1952-1965 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated. |
---|---|
ISSN: | 1561-8625 1934-6093 |
DOI: | 10.1002/asjc.2102 |