Loading…
Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system
The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stabi...
Saved in:
Published in: | Asian journal of control 2019-07, Vol.21 (4), p.1952-1965 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813 |
---|---|
cites | cdi_FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813 |
container_end_page | 1965 |
container_issue | 4 |
container_start_page | 1952 |
container_title | Asian journal of control |
container_volume | 21 |
creator | Ebrahim, Mohamed Ahmed Ramadan, Haitham Saad Soliman, Mahmoud |
description | The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated. |
doi_str_mv | 10.1002/asjc.2102 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302232351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302232351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEqVw4A0sceKQ1kvsJkdUtqJKIJaz5XopqVI72Gmr3HgEnpEnwaFcOc2v0Tczmg-Ac4xGGCEylnGlRgQjcgAGuKR5xlFJD1NmHGcFJ-wYnMS4QohjWrAB2D77xSa20Hn3_fllg1xWtYGyaYKX6h22HgYTq7oyroU6paWD3sKn2XWiFzIaDRe11AY2VZtw5V0bfA2tD3BXOQ2NM2HZ9f2tCbHyDsYutmZ9Co6srKM5-6tD8HZ78zq9z-aPd7Pp1TxTlBKS5aTUjCCqFEcGlxiVWk-4ZQU2JdN5oRFlWitOFTKWomTATggqCqyw4XmB6RBc7Pemfz42JrZi5TfBpZOCUEQIJZT11OWeUsHHGIwVTajWMnQCI9FrFb1W0WtN7HjP7pKo7n9QXL08TH8nfgCg_nvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302232351</pqid></control><display><type>article</type><title>Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ebrahim, Mohamed Ahmed ; Ramadan, Haitham Saad ; Soliman, Mahmoud</creator><creatorcontrib>Ebrahim, Mohamed Ahmed ; Ramadan, Haitham Saad ; Soliman, Mahmoud</creatorcontrib><description>The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2102</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Blade pitch control ; Control stability ; Controllers ; Energy conversion ; Fragility ; global stability ; Hybrid control ; Kharitonov's theorem ; Optimization ; Optimization techniques ; Parameter estimation ; Pitch (inclination) ; Polynomials ; Proportional integral derivative ; resilience and non‐fragility ; Robust control ; Robustness ; Routh-Hurwitz criterion ; wind energy ; Wind power</subject><ispartof>Asian journal of control, 2019-07, Vol.21 (4), p.1952-1965</ispartof><rights>2019 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813</citedby><cites>FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813</cites><orcidid>0000-0001-7878-2071 ; 0000-0001-8100-5206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ebrahim, Mohamed Ahmed</creatorcontrib><creatorcontrib>Ramadan, Haitham Saad</creatorcontrib><creatorcontrib>Soliman, Mahmoud</creatorcontrib><title>Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system</title><title>Asian journal of control</title><description>The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated.</description><subject>Blade pitch control</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Energy conversion</subject><subject>Fragility</subject><subject>global stability</subject><subject>Hybrid control</subject><subject>Kharitonov's theorem</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter estimation</subject><subject>Pitch (inclination)</subject><subject>Polynomials</subject><subject>Proportional integral derivative</subject><subject>resilience and non‐fragility</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Routh-Hurwitz criterion</subject><subject>wind energy</subject><subject>Wind power</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EEqVw4A0sceKQ1kvsJkdUtqJKIJaz5XopqVI72Gmr3HgEnpEnwaFcOc2v0Tczmg-Ac4xGGCEylnGlRgQjcgAGuKR5xlFJD1NmHGcFJ-wYnMS4QohjWrAB2D77xSa20Hn3_fllg1xWtYGyaYKX6h22HgYTq7oyroU6paWD3sKn2XWiFzIaDRe11AY2VZtw5V0bfA2tD3BXOQ2NM2HZ9f2tCbHyDsYutmZ9Co6srKM5-6tD8HZ78zq9z-aPd7Pp1TxTlBKS5aTUjCCqFEcGlxiVWk-4ZQU2JdN5oRFlWitOFTKWomTATggqCqyw4XmB6RBc7Pemfz42JrZi5TfBpZOCUEQIJZT11OWeUsHHGIwVTajWMnQCI9FrFb1W0WtN7HjP7pKo7n9QXL08TH8nfgCg_nvx</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Ebrahim, Mohamed Ahmed</creator><creator>Ramadan, Haitham Saad</creator><creator>Soliman, Mahmoud</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7878-2071</orcidid><orcidid>https://orcid.org/0000-0001-8100-5206</orcidid></search><sort><creationdate>201907</creationdate><title>Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system</title><author>Ebrahim, Mohamed Ahmed ; Ramadan, Haitham Saad ; Soliman, Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blade pitch control</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Energy conversion</topic><topic>Fragility</topic><topic>global stability</topic><topic>Hybrid control</topic><topic>Kharitonov's theorem</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter estimation</topic><topic>Pitch (inclination)</topic><topic>Polynomials</topic><topic>Proportional integral derivative</topic><topic>resilience and non‐fragility</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Routh-Hurwitz criterion</topic><topic>wind energy</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahim, Mohamed Ahmed</creatorcontrib><creatorcontrib>Ramadan, Haitham Saad</creatorcontrib><creatorcontrib>Soliman, Mahmoud</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahim, Mohamed Ahmed</au><au>Ramadan, Haitham Saad</au><au>Soliman, Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system</atitle><jtitle>Asian journal of control</jtitle><date>2019-07</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>1952</spage><epage>1965</epage><pages>1952-1965</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2102</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7878-2071</orcidid><orcidid>https://orcid.org/0000-0001-8100-5206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2019-07, Vol.21 (4), p.1952-1965 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_2302232351 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Blade pitch control Control stability Controllers Energy conversion Fragility global stability Hybrid control Kharitonov's theorem Optimization Optimization techniques Parameter estimation Pitch (inclination) Polynomials Proportional integral derivative resilience and non‐fragility Robust control Robustness Routh-Hurwitz criterion wind energy Wind power |
title | Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20non%E2%80%90fragile%20approach%20to%20resilient%20design%20of%20PID%E2%80%90based%20blade%20pitch%20control%20for%20wind%20energy%20conversion%20system&rft.jtitle=Asian%20journal%20of%20control&rft.au=Ebrahim,%20Mohamed%20Ahmed&rft.date=2019-07&rft.volume=21&rft.issue=4&rft.spage=1952&rft.epage=1965&rft.pages=1952-1965&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2102&rft_dat=%3Cproquest_cross%3E2302232351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2302232351&rft_id=info:pmid/&rfr_iscdi=true |