Loading…

Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system

The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stabi...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2019-07, Vol.21 (4), p.1952-1965
Main Authors: Ebrahim, Mohamed Ahmed, Ramadan, Haitham Saad, Soliman, Mahmoud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813
cites cdi_FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813
container_end_page 1965
container_issue 4
container_start_page 1952
container_title Asian journal of control
container_volume 21
creator Ebrahim, Mohamed Ahmed
Ramadan, Haitham Saad
Soliman, Mahmoud
description The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated.
doi_str_mv 10.1002/asjc.2102
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302232351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302232351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEqVw4A0sceKQ1kvsJkdUtqJKIJaz5XopqVI72Gmr3HgEnpEnwaFcOc2v0Tczmg-Ac4xGGCEylnGlRgQjcgAGuKR5xlFJD1NmHGcFJ-wYnMS4QohjWrAB2D77xSa20Hn3_fllg1xWtYGyaYKX6h22HgYTq7oyroU6paWD3sKn2XWiFzIaDRe11AY2VZtw5V0bfA2tD3BXOQ2NM2HZ9f2tCbHyDsYutmZ9Co6srKM5-6tD8HZ78zq9z-aPd7Pp1TxTlBKS5aTUjCCqFEcGlxiVWk-4ZQU2JdN5oRFlWitOFTKWomTATggqCqyw4XmB6RBc7Pemfz42JrZi5TfBpZOCUEQIJZT11OWeUsHHGIwVTajWMnQCI9FrFb1W0WtN7HjP7pKo7n9QXL08TH8nfgCg_nvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302232351</pqid></control><display><type>article</type><title>Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ebrahim, Mohamed Ahmed ; Ramadan, Haitham Saad ; Soliman, Mahmoud</creator><creatorcontrib>Ebrahim, Mohamed Ahmed ; Ramadan, Haitham Saad ; Soliman, Mahmoud</creatorcontrib><description>The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2102</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Blade pitch control ; Control stability ; Controllers ; Energy conversion ; Fragility ; global stability ; Hybrid control ; Kharitonov's theorem ; Optimization ; Optimization techniques ; Parameter estimation ; Pitch (inclination) ; Polynomials ; Proportional integral derivative ; resilience and non‐fragility ; Robust control ; Robustness ; Routh-Hurwitz criterion ; wind energy ; Wind power</subject><ispartof>Asian journal of control, 2019-07, Vol.21 (4), p.1952-1965</ispartof><rights>2019 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813</citedby><cites>FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813</cites><orcidid>0000-0001-7878-2071 ; 0000-0001-8100-5206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ebrahim, Mohamed Ahmed</creatorcontrib><creatorcontrib>Ramadan, Haitham Saad</creatorcontrib><creatorcontrib>Soliman, Mahmoud</creatorcontrib><title>Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system</title><title>Asian journal of control</title><description>The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated.</description><subject>Blade pitch control</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Energy conversion</subject><subject>Fragility</subject><subject>global stability</subject><subject>Hybrid control</subject><subject>Kharitonov's theorem</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter estimation</subject><subject>Pitch (inclination)</subject><subject>Polynomials</subject><subject>Proportional integral derivative</subject><subject>resilience and non‐fragility</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Routh-Hurwitz criterion</subject><subject>wind energy</subject><subject>Wind power</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EEqVw4A0sceKQ1kvsJkdUtqJKIJaz5XopqVI72Gmr3HgEnpEnwaFcOc2v0Tczmg-Ac4xGGCEylnGlRgQjcgAGuKR5xlFJD1NmHGcFJ-wYnMS4QohjWrAB2D77xSa20Hn3_fllg1xWtYGyaYKX6h22HgYTq7oyroU6paWD3sKn2XWiFzIaDRe11AY2VZtw5V0bfA2tD3BXOQ2NM2HZ9f2tCbHyDsYutmZ9Co6srKM5-6tD8HZ78zq9z-aPd7Pp1TxTlBKS5aTUjCCqFEcGlxiVWk-4ZQU2JdN5oRFlWitOFTKWomTATggqCqyw4XmB6RBc7Pemfz42JrZi5TfBpZOCUEQIJZT11OWeUsHHGIwVTajWMnQCI9FrFb1W0WtN7HjP7pKo7n9QXL08TH8nfgCg_nvx</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Ebrahim, Mohamed Ahmed</creator><creator>Ramadan, Haitham Saad</creator><creator>Soliman, Mahmoud</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7878-2071</orcidid><orcidid>https://orcid.org/0000-0001-8100-5206</orcidid></search><sort><creationdate>201907</creationdate><title>Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system</title><author>Ebrahim, Mohamed Ahmed ; Ramadan, Haitham Saad ; Soliman, Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blade pitch control</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Energy conversion</topic><topic>Fragility</topic><topic>global stability</topic><topic>Hybrid control</topic><topic>Kharitonov's theorem</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter estimation</topic><topic>Pitch (inclination)</topic><topic>Polynomials</topic><topic>Proportional integral derivative</topic><topic>resilience and non‐fragility</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Routh-Hurwitz criterion</topic><topic>wind energy</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahim, Mohamed Ahmed</creatorcontrib><creatorcontrib>Ramadan, Haitham Saad</creatorcontrib><creatorcontrib>Soliman, Mahmoud</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahim, Mohamed Ahmed</au><au>Ramadan, Haitham Saad</au><au>Soliman, Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system</atitle><jtitle>Asian journal of control</jtitle><date>2019-07</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>1952</spage><epage>1965</epage><pages>1952-1965</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>The design of a blade pitch controller (BPC) for wind energy conversion system (WECS) applications is load‐dependent and has to be adjusted for each operating condition. Thus, BPC robustness is important for coping with the endless variations in operating conditions. The boundaries of a robust stability region are determined in regards to the controller parameters plane using their relevant set of polynomial inequalities via Referential Integrity between Routh‐Hurwitz criterion and Root‐Locus (RI‐RH/RL) approach. Constrained and unconstrained stability regions respectively are defined through a novel hybrid control technique based on the combination of both RI‐RH/RL and Kharitonov (Kh) theorem. The hybrid RI‐Kh method is used for globally analyzing all vertex plants to ensure the proposed controller robustness, non‐fragility, and resilience by selecting its parameters at the center of the robust stability region. The optimal BPC‐PID parameters estimated using different optimization techniques are always located within the specified stability region. Thus, the capability of the RI‐Kh approach in determining the most robust, non‐fragile and resilient controller is verified. Through simulation results, the effectiveness of the proposed approach and its applicability to WECS' global stabilization are validated.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2102</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7878-2071</orcidid><orcidid>https://orcid.org/0000-0001-8100-5206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2019-07, Vol.21 (4), p.1952-1965
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2302232351
source Wiley-Blackwell Read & Publish Collection
subjects Blade pitch control
Control stability
Controllers
Energy conversion
Fragility
global stability
Hybrid control
Kharitonov's theorem
Optimization
Optimization techniques
Parameter estimation
Pitch (inclination)
Polynomials
Proportional integral derivative
resilience and non‐fragility
Robust control
Robustness
Routh-Hurwitz criterion
wind energy
Wind power
title Robust non‐fragile approach to resilient design of PID‐based blade pitch control for wind energy conversion system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20non%E2%80%90fragile%20approach%20to%20resilient%20design%20of%20PID%E2%80%90based%20blade%20pitch%20control%20for%20wind%20energy%20conversion%20system&rft.jtitle=Asian%20journal%20of%20control&rft.au=Ebrahim,%20Mohamed%20Ahmed&rft.date=2019-07&rft.volume=21&rft.issue=4&rft.spage=1952&rft.epage=1965&rft.pages=1952-1965&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2102&rft_dat=%3Cproquest_cross%3E2302232351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3322-429d5203cc60e19109dd76f581e95d48d035ddc63c0ef30100f720881c1e64813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2302232351&rft_id=info:pmid/&rfr_iscdi=true