Loading…
An iterative model predictive control algorithm for constrained nonlinear systems
An iterative model predictive control (MPC) scheme for constrained nonlinear systems is presented. The idea of the method is to detour from the solution of a non‐convex optimization problem using a time‐variant linearization of the nonlinear system model that is adjusted iteratively by solving an it...
Saved in:
Published in: | Asian journal of control 2019-09, Vol.21 (5), p.2193-2207 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An iterative model predictive control (MPC) scheme for constrained nonlinear systems is presented. The idea of the method is to detour from the solution of a non‐convex optimization problem using a time‐variant linearization of the nonlinear system model that is adjusted iteratively by solving an iterative quadratic programming optimization problem at each sampling time. The main advantage is the faster resolution of the optimization problem by using quadratic programming instead of non‐convex programming and yet, properly describing the nonlinear dynamics of the process being controlled. In this article, a general framework of the method is presented together with a discussion on the conditions under which the iterations converge and on the uncertainty of its results due to the linearization used, as well as some practical considerations about its implementation. The performance of the proposed controller is illustrated via two examples. |
---|---|
ISSN: | 1561-8625 1934-6093 |
DOI: | 10.1002/asjc.1815 |