Loading…

An iterative model predictive control algorithm for constrained nonlinear systems

An iterative model predictive control (MPC) scheme for constrained nonlinear systems is presented. The idea of the method is to detour from the solution of a non‐convex optimization problem using a time‐variant linearization of the nonlinear system model that is adjusted iteratively by solving an it...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2019-09, Vol.21 (5), p.2193-2207
Main Authors: Silva, Nivaldo F., Dórea, Carlos Eduardo T., Maitelli, André L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An iterative model predictive control (MPC) scheme for constrained nonlinear systems is presented. The idea of the method is to detour from the solution of a non‐convex optimization problem using a time‐variant linearization of the nonlinear system model that is adjusted iteratively by solving an iterative quadratic programming optimization problem at each sampling time. The main advantage is the faster resolution of the optimization problem by using quadratic programming instead of non‐convex programming and yet, properly describing the nonlinear dynamics of the process being controlled. In this article, a general framework of the method is presented together with a discussion on the conditions under which the iterations converge and on the uncertainty of its results due to the linearization used, as well as some practical considerations about its implementation. The performance of the proposed controller is illustrated via two examples.
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.1815